
Technical Assignment for ELEC0032:
Networking Systems 23/24

Author

Candidate Number: JGLR6

Taught by

Dr Anna Maria Mandalari
Gianluca Anselmi

An assignment submitted in fulfillment of requirements for the degree of
Bachelor of Arts and Science: Cultures & Engineering

Teaching department: Electronic and Electrical Engineering University College London
2023

Assignment:

You are being contracted as a consultant to advise a large technology company on investing in new

technologies and protocols across the entire OSI and IoT stacks.

Contents

Assignment: 2

List of Figures 6

List of Tables 7

1 Part 1 - Medium Access Control 8

1.1 Performance estimator for 3 instances. 8

1.2 Slotted Aloha Python Simulation for the instances. 14

1.3 A multi-user scenario: . 17

2 Part 2 - Physical Layer 19

2.1 Create the QAM and OFDM objects and generate the transmit signal. [30%] . . . 20

2.2 Characterize the impulse response of the channel. [30%] 22

2.3 Provide a short summary of the regulatory conditions in the UK associated with
this frequency band. [20%] . 23

2.4 Provide a short summary of competitor technologies. [20%] 25

3 Part 3 - Network and Transport 26

3.1 The backbone topology of the network with realistic IP addresses and OSPF weights.
[25%] . 26

3.1.1 Topology . 26

3.1.2 IP addresses . 27

3.1.3 OSPF Weights . 30

3.2 Proposed capacity of each link taking into account population in each region/city.
[25%] . 31

3.3 Wireshark . 32

3.3.1 Analysing the distribution of traffic (TCP vs. UDP) 33

3.3.2 Analysisng TCP Fast Retransmissions, TCP Duplicate ACKS, and ACK RTT 33

4

4 Part 4 - Data Analytics 36

4.1 Data Visualization. [20%] . 37

4.1.1 Create visualisations illustrating the variation of each sensor’s value over time. 37

4.1.2 Generate a count plot displaying the quantity of the unique labels of the
machine status. What insights can you derive from the histogram? 37

4.2 Data Exploration: [40%] . 38

4.2.1 Plot the Pearson correlation of the data with a correlation coefficient greater
than 0.9. What insights we can derive based on the produced results and
task A.a? Is it possible to group any of the sensor data together? If yes,
could you provide an example of such a group? 38

4.2.2 Produce a table containing descriptive statistics, summarizing the central
tendency, dispersion and shape of a dataset’s distribution, for the sensor data. 40

4.2.3 Compute the duration, in terms of the number of days, for which the data
was collected. 40

4.3 Data Pre-processing: [40%] . 41

4.3.1 Identify and count the number of null values per attribute, then remove
entries with null values. 41

4.3.2 Identify and count any duplicated entries and remove them from the dataset. 41

4.3.3 Encode the data in the machine status column. 41

4.3.4 Determine the data types of the sensor data, and normalise the relevant
input features. 42

A Code Appendix Part 1 44

A.1 The impact on slotted Aloha‘s performance with different packet arrival rates. . . . 44

A.2 Adjusted slot size . 46

B Code Appendix Part 2 49

B.1 Average Bit Error Rate . 49

B.2 QAM and OFDM with and without noise . 52

B.3 Impulse Response Characteristics based in Time and Frequency 57

C Code Appendix Part 3 59

C.1 TCP vs UDP . 59

C.2 Average RTT . 63

C.3 TCP Analysis . 66

5

D Code Appendix Part 4 73

D.1 Variation of sensors over time . 73

D.2 Unique Labels Count . 75

D.3 General Pearson Correlation . 76

D.4 Pearson Correlation for 0.9 . 77

D.5 Descriptive Statistics . 78

D.6 Number of days . 79

D.7 Counting null values and removing them . 80

D.8 Counting duplicate entries . 81

D.9 Encoding the data in the machine status column 81

D.10 Data types and normalisation . 82

Bibliography 83

List of Figures

1.1 Current Consumption of Hops for Reporting Intervals between 3 and 15 seconds. . 13

1.2 Graph of different packet arrival rates for a window size of 8 for Slotted ALOHA
protocol . 15

1.3 Graph of 0.616 packet arrival rate for different window size for Slotted ALOHA
protocol for a halved slot size . 16

2.1 UK Frequency Allocation Table (UKFAT) . 24

2.2 UK Frequency Allocation Table (UKFAT) . 24

3.1 Diagram of network . 28

3.2 Diagram of router topology . 29

3.3 Russia’s Population Density . 30

3.4 TCP vs UDP pie chart . 34

3.5 TCP Analysis . 35

4.1 Each sensor’s value over time . 37

4.2 Quantity of unique labels of the machine status . 38

4.3 Overall Pearson Correlation . 39

4.4 Pearson Correlation greater than 0.9 . 39

4.5 Descriptive statistics, for each sensor . 40

4.6 Count of Null Values for each sensor. 41

4.7 Sensor 1 before min-max normalisation. 43

4.8 Sensor 1 after min-max normalisation. 43

0

List of Tables

1.1 A network proposal for a couple of sensor-enabled IoT powered lamp posts. High
density of nodes (lights), each operating at low transmission power with moderate
reporting interval and payload size for status updates. Uses Zigbee because of short
distances. 9

1.2 A network with nodes equipped with soil moisture and temperature monitors in an
agricultural land. Sparse node distribution across a large area. Larger payload due
to detailed sensor data and longer reporting intervals throughout the day. 10

1.3 A network for monitoring the health and efficiency of machinery in a smart IoT
factory. Dense node distribution, high data throughput, short reporting intervals,
and high transmission power for real-time monitoring. 11

2.1 16-QAM and OFDM objects and the generated transmit signal 20

2.3 Characteristics of the impulse response channel before and after adding more noise
for both the forst demodulated OFDM signal and the 16-QAM signal 21

2.4 Impulse Response Characteristics . 22

1

1
Part 1 - Medium Access Control

Contents
1.1 Performance estimator for 3 instances. 8
1.2 Slotted Aloha Python Simulation for the instances. 14
1.3 A multi-user scenario: . 17

1.1 Performance estimator for 3 instances.

With the help of the performance estimator, generate 3 instances of an Internet of Things (IoT)

scenario and comment on the rela- tionship between power and performance of the network. [40%]

1

1.1. PERFORMANCE ESTIMATOR FOR 3 INSTANCES. 9

Instance 1 - Urban Smart Lighting

Table 1.1: A network proposal for a couple of sensor-enabled IoT powered lamp posts. High density
of nodes (lights), each operating at low transmission power with moderate reporting interval and
payload size for status updates. Uses Zigbee because of short distances.

1

1.1. PERFORMANCE ESTIMATOR FOR 3 INSTANCES. 10

Instance 2 - IoT Agricultural Monitoring

Table 1.2: A network with nodes equipped with soil moisture and temperature monitors in an
agricultural land. Sparse node distribution across a large area. Larger payload due to detailed
sensor data and longer reporting intervals throughout the day.

1

1.1. PERFORMANCE ESTIMATOR FOR 3 INSTANCES. 11

Instance 3 - Industrial IoT Factory

Table 1.3: A network for monitoring the health and efficiency of machinery in a smart IoT factory.
Dense node distribution, high data throughput, short reporting intervals, and high transmission
power for real-time monitoring.

1

1.1. PERFORMANCE ESTIMATOR FOR 3 INSTANCES. 12

1. The different parameters that characterize the network.

• Reporting interval: how frequent a mote needs to send information. For example,

for Instance 3, each mote will send a packet every 10 seconds because of the real-time

monitoring needed for industrial IoT in factories. Comparing this to Instance 1 and 2

where higher reporting intervals are better because the nodes are equipped with sensors

for either someone walking in front of the lamp-post (Instance 1) or for temperature of

the soil declining by a certain level (Instance 2)

• Payload size: the dimension of the packet that each mote sends. For Instances 1 and

2 the payload size is smaller because it is sensor based-data. Someone either activates

the sensor or not. Payload for instance 2 is higher than for Instance 1 because data such

as soil temperature and moisture might have to be transmitted. And Instance 3 has the

highest payload because it would collect data from various machines and equipment in

the factory, allowing manufacturers to identify trends and areas for improvement.

• Path stability: reliability of the connection (e.g., 50% means that on average half of

the transmissions fail). Typical path stability varies per environment but 80% is usual

for indoor settings with moderate WiFi use which is why the scenario of Smart Urban

Lighting and the Industrial IoT Factory (Instances 1 and 3) have 80% stability while

the Agricultural IoT Monitoring in a possibly remote and outdoor area only has 50%

stability because of parameters such as interference, collision with overlapping local

networks and multi path fading. [1]

2. The latency experienced at different hops.

• Latency is higher for packets being sent from motes that are far away because they have

to go through multiple hops which is the case for the Instance 2 and 3. Urban scenario

may exhibit low latency due to shorter distances, whereas agricultural monitoring might

face higher latency due to long distances. Unlike Instance 1, where the area needed to

be covered could be the length of one small park street, Instances 2 and 3 require larger

areas such as acres of land or a couple km of factories. The more hops they have to go

through, the more likely it is that collisions will happen because other packets are being

sent forward at the same time. This leads to more latency for packets being sent from

far away mops that need to hop multiple times in the MAC layer [2].

3. Battery vs number of hops.

1

1.1. PERFORMANCE ESTIMATOR FOR 3 INSTANCES. 13

Figure 1.1: This figure was done with the provided Power and Performance Estimator Worksheet.
2-Hop is almost identical to 3-Hop and 5-Hop which is why the line underneath (Graph made from
data in Tables 1.1 - 1.3).

• More hops typically mean more power consumption and reduced battery life. Addi-

tionally, sending more frequent information increases the data-rate at the trade-off for

greater battery consumption, while longer packets leads to a gain in battery consump-

tion at the trade-off of increased delay.

• Motes far away consume much less because they don’t need to carry the packets forward

like all the motes do that are closer to the gateway. Which is why in Instance 3, where

there are the most amount of motes on most hops, the battery life for 1-Hop is the 1.4

years less than in Instance 2 and 5.1 years less than Instance 1.

4. Transmission frequency vs consumption.

• Sending more frequent information increase the data-rate but at a large energy con-

sumption price. The reporting interval for Instance 3 (IoT factory) is much lower than

Instances 1 and 2. A 20 second difference in reporting intervals contributes to the high-

est current consumption out of all Instances. At a 10 second reporting interval it can

be seen that 1-Hop current consumption is 90µA. This is the only interval in which the

current consumption is below 90 for all Hops which optimises the network’s battery life

while the machines functioning in the IoT Factory as seen in Fig 1.1 [2]

5. Latency vs consumption.

• Motes far away consume less but at the price of higher latency. This can be seen very

clearly in Instance 3 (IoT Factory) where even though there are less motes on the hops

further away, the latency is much higher on the 7-Hop (16.14s) compared to 1-Hop

1

1.2. SLOTTED ALOHA PYTHON SIMULATION FOR THE INSTANCES. 14

(1.80s). While latency increases the further away the mote is, the current consumption

however, decreases from 1-Hop (90µA) to 7-Hop (26.8µA). This is because the motes

closest to the gateway have to process the information sent from all the previous motes

which increases consumption but once it is processed it can be sent to the gateway

quickly, therefore low latency. [1]

6. Network build time vs consumption.

• Faster network setup might require more power. In critical applications like industrial

IoT, quick network establishment is essential, even if it’s power-intensive.

• The protocol is scheduled, but the duty cycle has an effect at the beginning when

the network is building up. This can be seen in Instance 3 (IoT Factory) where the

minimum time to have all the motes join the network manager and be “operational” is

14 minutes. With higher duty cycle the network synchronizes faster, but at the price of

higher consumption[3].

1.2 Slotted Aloha Python Simulation for the instances.

With the help of Python simulate Slotted Aloha for your instances. [40%] Analyze in detail (use

plots and text for presenting your results):

1. The impact on slotted Aloha‘s performance with different packet arrival rates.

Code available in Appendix A.1. Result seen in Figure 1.2

The packet arrival rates range for industrial IoT factory applications was determined to be

between 0.016 and 1 from literature. [4]

It is clear that the most long-lasting efficiency for a window of 8 is for the packet arrival

rates of 0.416 but that comes at the price of high volatility in slot efficiency making it less

predictable. We recommend using a packet arrival rate of 0.616 for an instance such as

agricultural monitoring where the total nr of nodes would be 13 or for the urban smart

lighting for 17 nodes in total. A different window size is recommended for an instance of

more than 100 nodes such as the industrial IoT factory. [5]

1

1.2. SLOTTED ALOHA PYTHON SIMULATION FOR THE INSTANCES. 15

Figure 1.2: Graph of different packet arrival rates for a window size of 8 for Slotted ALOHA
protocol.

2. Adjust the slot size and assess how it affects the protocol’s performance.

Code available in Appendix A.2. Result seen in Figure 1.3

For the case of the packet arrival rate being 0.616 a couple of window sizes were tested in

Fig 1.3. Because the number of nodes for the instance of the IoT factory is a total of 100

Motes, the window size with the highest slot efficiency over the longest period of time would

have to be one of either 128 or 64. The change of slot sizes affects the protocol’s performance

because the smaller the slot size, the more efficient it would be for small number of nodes.

Once a lot of packets are being sent through more than 50 nodes, larger slot sizes are better

because they can be timed accordingly. More nodes also means higher latency because it

would take longer for information to be sent down to the gateway.

1

1.2. SLOTTED ALOHA PYTHON SIMULATION FOR THE INSTANCES. 16

Figure 1.3: Graph of same packet arrival rate for different window size for Slotted ALOHA protocol
for a halved slot size.

3. Explore the consequence of collisions and discuss potential collision handling

strategies.

• Exponential Backoff: After a collision, the device waits for a random amount of time

before reattempting transmission, with the wait time increasing exponentially with each

subsequent collision. This BACKOFF is a key part of the CSMA protocol and not

Slotted-ALOHA.

• Hand-Shaking: Techniques like CSMA/CA can be employed to reduce the likelihood

of collisions by listening to the channel before transmitting. These might be handshake

methods or carrier sensing but they come at the cost of higher energy consumption. A

handshaking method would also solve the Hidden Node Problem.

• Controlling Packet Overhead: Controlling packet overhead and overhearing can be

used to reduce collisions. This is because it can reduce re-transmissions. This is a

trade-off between energy efficiency and latency.

1

1.3. A MULTI-USER SCENARIO: 17

1.3 A multi-user scenario:

1. Consider a multi-user scenario with N = 10 sources transmitting based on the Slotted-Aloha

protocol. Assume that each source has a packet generation rate of λ = 103 packets per second

and packet length (M = 10)3 bits, transmitting over a channel with transmission rate R.

Given that a normalized traffic L = 1 is experienced, evaluate the transmission rate. What

is the impact of a higher packet generation rate? [20%]

In Slotted-ALOHA protocol, the transmission rate is influenced by the number of active users

and their packet generation rate. As the throughput S of the protocol is given by the formula

S = G× e−G where G is the average number of packets generated by the system.[6]

Given that there are N = 10 users, each generating λ = 103 packets per second, and assuming

packet length of M = 103 bits, we need to calculate packet time T .

The normalised traffic L = 1 can be substituted in the equation

L = N × λ× T = 1

to solve for T: 10× 103 × T = 1

∴ T = 1/10000

The formula T = M/R can be rearranged to solve for R = M/T . [3]

R = 103 ÷ 1

10000

∴ R = 10, 000, 000 bits per second

Increasing the packet generation rate (λ) while keeping other parameters constant will increase

the normalized traffic L, leading to a higher likelihood of packet collisions in the Slotted-Aloha

system. This will decrease the system efficiency and throughput. Because this is a contention-based

protocol, it is scale-able but at the trade-off of more collisions. This is also ideal for discontinuous

data and can therefore accommodate more users than channel resources.

1

1.3. A MULTI-USER SCENARIO: 18

Because this is Slotted-ALOHA, and not CSMA, the sources transmit without sensing the

channel which means that it has a lower energy consumption at the trade-off of possibly more

collisions. This is reasonable for our multi-user scenario because Slotted-ALOHA is efficient at low

load.

2

2
Part 2 - Physical Layer

Contents
2.1 Create the QAM and OFDM objects and generate the transmit signal.

[30%] . 20
2.2 Characterize the impulse response of the channel. [30%] 22
2.3 Provide a short summary of the regulatory conditions in the UK as-

sociated with this frequency band. [20%] 23
2.4 Provide a short summary of competitor technologies. [20%] 25

The company is looking to acquire a new wireless technology. You have been told that the

inventors are using 16-QAM as a modulation scheme in the 2.4 ∗ 107 Hz band. It claims to offer

bit rates of 100Mbit/s, 50Mbit/s, 25Mbit/s and 10Mbit/s at a BER = 10-4 and that the system

will work up to 2km.

You have been asked to prepare a document evaluating the technology. The company has asked

for the following issues to be considered in your document maximum six pages:

2

2.1. CREATE THE QAM AND OFDM OBJECTS AND GENERATE THE TRANSMIT
SIGNAL. [30%] 20

2.1 Create the QAM and OFDM objects and generate the

transmit signal. [30%]

Given the bit rates BR1 = 10e + 8 bits/s, BR2 = 5e + 7 bits/s, BR3 = 2.5e + 7 bits/s, BR4 =

1e + 7 bits/s and the bandwidth = 2.4 Hz we can find the Symbol Rate (SR) with the formula

SR = BR
log2M

.

To get fft-size we need to calculate the subcarrier spacing with the formula:

subcarrier spacing =
SR

nr subcarriers

We then substitute the subcarrier spacing in the following formula to get multiple ftt-sizes:

fft-size =
bandwidth

subcarrier spacing

We then see that BR4 = 10e7 bits/s gets us to the fft-size = 8192 which then gives the

BER = 0.0325. This is the closest to 10−4 than any other Bit Error Rates generated. (BER1 =

ERROR because the ftt-size was 576 which is lower than the number of subcarriers BER2 = 0.04062,

BER3 = 0.06483, BER4 = 0.03254)

QAM-16 modulation constellation in a scatter plot OFDM modulated data scatter plot

Table 2.1: 16-QAM and OFDM objects and the generated transmit signal

Average Bit Error Rate (30 runs): 0.01068

Average Bit Error Rate (60 runs): 0.01472

2

2.1. CREATE THE QAM AND OFDM OBJECTS AND GENERATE THE TRANSMIT
SIGNAL. [30%] 21

Code for average Bit Error Rates is available in Appendix B.1.

We found that increasing the noise var from 1e−1 to 9e−1 also increases the BER and SER

and changes the preciseness of the signal as seen in Table 2.3 below.

(a) 16-QAM symbols transmitted in the OFDM sym-
bols with noise variation= 1e − 1, represented with
its real and imaginary part

(b) First demodulated OFDM symbols with noise
variation = 1e−1, represented with its real and imag-
inary part

(a) 16-QAM symbols transmitted in the OFDM sym-
bols with noise variation = 9e − 1, represented with
its real and imaginary part

(b) First demodulated OFDM symbols with noise
variation = 9e−1, represented with its real and imag-
inary part

Table 2.3: Characteristics of the impulse response channel before and after adding more noise for
both the forst demodulated OFDM signal and the 16-QAM signal

Symbol Error Rate WITHOUT noise: 0.03466

Symbol Error Rate WITH noise: 0.124

Code for Symbol Error Rates is available in Appendix B.2.

2

2.2. CHARACTERIZE THE IMPULSE RESPONSE OF THE CHANNEL. [30%] 22

2.2 Characterize the impulse response of the channel. [30%]

The object <pyphysim.channels.fading.TdlImpulseResponse from print(impulse_response)

is called TDL impulse response. The documentation of pyphysim library shows that the parameter

tap_values from the TdlImpulseResponse class is an array. These values can be used to plot them

against time and frequency to characterise the impulse response of the channel. Code available in

Appendix B.3

Considering different times and different frequencies, the impulse response varies [7]. As seen in

Table 2.4, the TDL Impulse Response based in time, varief only slightly, over time. When looking

at the TDL Impulse Response based in frequency, the Amplitude increases up to 4(HZ), decreases

drastically from 4(HZ) to 5(HZ) and then rises again with the same gradient to 9(HZ).

Impulse Response variation based in time Impulse Response variation based in frequency

Table 2.4: Impulse Response Characteristics

It characterizes how the channel distorts or modifies a signal as it passes through and then tells

the equalizer about this behaviour so that it can fix the Symbol Error Rate and reduce it to 0

Table 2.3 shows the characteristics of the impulse response channel before and after adding

more noise. Code available in Appendix B.3

When selecting a modulation scheme we will always be trading off power efficiency against

bandwidth efficiency. If the system is to be used in doors for example we might also need to

consider a modulation scheme that provides immunity to Multipath Fading.

To avoid intersymbol interference for short bits on single carriers, we can use multi-carrier

modulation. The short bits are taken through a Serial-to-Parallel Converter which outputs longer

bits which would then be modulated on different frequency channels. Multipath allows for fading

only to affect a small part of the signal and they main method is OFDM (Orthogonal Frequency

2

2.3. PROVIDE A SHORT SUMMARY OF THE REGULATORY CONDITIONS IN THE UK
ASSOCIATED WITH THIS FREQUENCY BAND. [20%] 23

Division Multiplexing). This scheme that uses multiple channels that each carry a different data

stream reduces the data rate on each carrier and gives better immunity to multipath. OFDM can

achieve high data rates and robustness to fading by using multiple subcarriers, but it also requires

more bandwidth, more power consumption, and more complexity than QAM.

2.3 Provide a short summary of the regulatory conditions

in the UK associated with this frequency band. [20%]

The frequency band of 2.4GHz tends to be of low range and is characterised by technologies such

as Bluetooth, ZigBee, ANT, 802.11b and 6LoWPAN [8]. This frequency band is heavily congested

because it has all the Wireless LANs, Bluetooth, etc. which are used by microwaves, ovens, strip

lighting, ring doorbells, baby monitors, Home Routers and HotSpot locations and for most wireless

devices [9]. Wireless LANS, together with the 2.4GHz band are in the unlicensed spectrum band.

The 2.4 GHz has been an unlicensed band since June 2003 in the UK and throughout Europe [10].

In the UK, Short Range Devices (SRD) do not need to be licensed unless they are interfering

with radio communications services such as radars and microphones [11].

The low power 2.4GHz devices exempt from licensing are contained in Ofcom’s Interface Re-

quirement IR2030 as seen in Fig 2.2. The 2.4GHz band is also populated by the following products

and sectors as seen in Fig 2.1 and Fig 2.2. The spectrum operating frequency range is 2412 –

2484MHz and the OFCOM /ETSI standard for UK Operating channels are between Channel 1 -

13 [12].

2

2.3. PROVIDE A SHORT SUMMARY OF THE REGULATORY CONDITIONS IN THE UK
ASSOCIATED WITH THIS FREQUENCY BAND. [20%] 24

Figure 2.1: OFCOM’s UK Frequency Allocation Table (UKFAT). Last Updated 29th March 2022
[13]

Figure 2.2: OFCOM’s UK Frequency Allocation Table (UKFAT). [13]

2

2.4. PROVIDE A SHORT SUMMARY OF COMPETITOR TECHNOLOGIES. [20%] 25

2.4 Provide a short summary of competitor technologies.

[20%]

A wireless standard for IoT with a high range of 2km in the low frequency band of 2.4GHz that

has bit rates of 100kbit/s, 50kbit/s, 1Mbit/s and 5Mbit/s is hard to find. The best strategy is

to consider which one of these metrics the company values the most. Given our case of 1Mbit/s

causing the lowest Bit Error Rate, WiFi 802.11g could be the best solution for this case. The

major modulation scheme for WiFi is OFDM with each carrier, carrying a 16 level QAM with a

time division duplex (TDD). The maximum network bandwidth is 54 Mbps in the 2.4 GHz bands,

however, it only operates in short distances [14].

If the channel is noisy and fading, OFDM may be a better choice than QAM, because it can

cope with channel variations and use different modulation levels for each subcarrier. If the channel

is stable and clear, QAM may be a better choice than OFDM [15]. OFDM has Good performance

under delay spread conditions, good bandwidth efficiency and it is easier to equalise when compared

to single carrier signals. Some disadvantages are poor performance under Doppler spread conditions

(a characteristic of fast moving applications with time-varying channels) and a large Peak-to-

average power ratio (PAPR). This causes poor performance under non-linear distortion which is

the same as in QAM.

Another wireless technology such as ZigBee for example, is a mesh local area network (LAN)

protocol which is in the 2.4GHz band. However, the bit rate is below 250kbits/s and the system

would only work for up to 291m. Bluetooth LE is similar but with a higher data rate of 1Mb/s

and a slightly lower range of 77m [16].

If a 2.4GHz frequency and higher range are important, then LoRa 2.4GHz might be an ap-

propriate solution. It covers a range up to 1km on the 2.4GHz at the cost of a smaller bit rate

than the standard LoRa variant (254kbit/s). However, the LoRa physical layer takes advantage of

a Chirp Spreading Spectrum (CSS) modulation rather than the preferred Quadrature Amplitude

Modulation (QAM) scheme [17].

3

3
Part 3 - Network and Transport

Contents
3.1 The backbone topology of the network with realistic IP addresses and

OSPF weights. [25%] . 26
3.1.1 Topology . 26
3.1.2 IP addresses . 27
3.1.3 OSPF Weights . 30

3.2 Proposed capacity of each link taking into account population in each
region/city. [25%] . 31

3.3 Wireshark . 32
3.3.1 Analysing the distribution of traffic (TCP vs. UDP) 33
3.3.2 Analysisng TCP Fast Retransmissions, TCP Duplicate ACKS, and ACK

RTT . 33

In this part, you are going to produce a design for an IP network of a commercial ISP in the

UK. The ISP has about 30% of the market of Russian commercial residential broadband uniformly

around the country and provides to its users a 100 Mbit/s connection. You should include:

3.1 The backbone topology of the network with realistic IP

addresses and OSPF weights. [25%]

3.1.1 Topology

Assuming that the ISP operates in UK and in Russia, we propose designing the backbone topology

as a hierarchical design with a core layer, distribution layer, and access layer as seen in Figure 3.2

[18].

3

3.1. THE BACKBONE TOPOLOGY OF THE NETWORK WITH REALISTIC IP
ADDRESSES AND OSPF WEIGHTS. [25%] 27

1. The core layer will consist of high-speed routers that will provide connectivity between

different regions. Because we have a large ISP network, the core layer will involve routing

between different Autonomous System (AS) [19]. Destinations outside are learned through

Borger Gateway Protocol (BGP) and are disseminated inside an AS through iBGP protocol

[20].

2. The distribution layer will consist of routers that will connect to the core layer and provide

connectivity to the access layer. This would also facilitate efficient data flow and enable

network services like load balancing and security. These intra-domain routing protocols run

inside each AS through and aggregate data before it is transported to the core layer.

3. The access layer will consist of switches that will connect to end-users and provide access

to the Internet. These intra-domain routing protocols run inside each AS and destinations in

the same AS use Open Shortest Path First Protocol (OPSF) led by the Dijkstra’s algorithm

[21]. This layer can be tailored to the specific needs of different user groups.

According to UK Government guidance, the IP network of a commercial ISP should have

installed a resilient high speed internet link of 10Gbps. A bearer with the required maximum

bandwidth should also be used, one that is flexible enough to support actual use. Smaller hubs

could use a 1Gbps bearer, but this will reduce future expansion options [22].

The internet link must have:

1. 2 bearers (fibre links installed into the building).

2. 2 customer premises equipment (CPE) devices that connect the bearers to the customer

network, using a first hop redundancy protocol (FHRP) such as Virtual Router Redundancy

Protocol (VRRP) to provide failover capability.

3. routing protocols such as border gateway protocol (BGP) and open shortest path first (OSPF)

to learn the default route depending on ISP capability and service options.

4. available public routed IP space (IPv4 and IPv6).

5. a switch that allows the internet link to connect to multiple devices.

3.1.2 IP addresses

We could assign the following IP addresses to the different layers for example:

3

3.1. THE BACKBONE TOPOLOGY OF THE NETWORK WITH REALISTIC IP
ADDRESSES AND OSPF WEIGHTS. [25%] 28

Figure 3.1: Diagram of network with an example of two ISP routers. [22]

1. Core layer: 10.0.0.0/8

2. Distribution/Regional layer: 172.16.0.0/12

3. Access layer: 192.168.0.0/18

These are the suggested IP addresses but they need to be requested officially through the RIPE

NNC database [23].

We are suggesting an IPv4 address for the access layer with a subnet mask of 18 bits for network

identification (netid) and the remaining 14 bits for hosting addresses within that network (hostid).

A larger subnet of /12 subnet is commonly used for organisations’ internal networks. It allows

for easier management of a large number of devices without the need for excessive subnetting. It

facilitates efficient routing by summarizing multiple smaller networks (from the access layer) into

a single, larger network. which is why we can use it to aggregate data on the distribution layer

before sending it across Autonomous Systems [24].

Lastly, because the existing network infrastructure (distribution and access layers) predomi-

nantly uses IPv4, it may be practical for the core layer to also use IPv4 for compatibility and

ease of integration. However, considering the exhaustion IPv4 address and the advanced features

of IPv6, it’s wise to plan for IPv6 implementation. This can be done gradually, using dual-stack

configurations where devices run both IPv4 and IPv6 simultaneously. IPv6 introduces Quality of

3

3.1. THE BACKBONE TOPOLOGY OF THE NETWORK WITH REALISTIC IP
ADDRESSES AND OSPF WEIGHTS. [25%] 29

Service (QoS) support, removes Checksum, reducing processing time in routers at each hop. IPv6

is justified by the need to manage a vast and varied customer base effectively.

Figure 3.2: Diagram of router topology between Access, Distribution and Core Layers. [25]

Private IP network are connected to the Internet via a Network Address Translation (NAT)

device. This is also feature of office routers that allows multiple computers in the building to

communicate with the outer world which is essential for our commercial ISP with a 30% share of

it’s market in Russian residential broadband [26].

A study by BSRIA showed that there is a need for reliable numbers for connected devices in

commercial buildings, with one example is the emergence of new Wi-Fi access points (Wi-Fi 6,

802.11ax) that can handle multiple devices using several protocols such as Bluetooth and Zigbee

for IoT stacks.

BSRIA estimates the number of connected (wireless) devices in commercial buildings to be 150

– 200 million in 2019 worldwide [27].

“The majority of devices today are IP and are linked in subnetworks with a common backbone

or connected via V-LANs, which enable centralised monitoring and control.” Shown in Figure 3.2’

Based on the population densities in Russia, we recommend installing a router for every reagion

that the Core Layer of th UK ISP should have access to. This Includes: Moscow, St Petersburg

and Rostov-on-Don as seen in Figure 3.3.

We therefore recommend installing a router for every region in the Core Layer such as London,

Manchetser, Birmingham, Edinburgh, Moscow, and St Petersburg, Rostov-on-Don. Those would

be connected to the main infrastructure of the UK ISP and have the following OSPF weights

attributed from the list of available suppliers in the UK [28].

3

3.1. THE BACKBONE TOPOLOGY OF THE NETWORK WITH REALISTIC IP
ADDRESSES AND OSPF WEIGHTS. [25%] 30

Figure 3.3: Population Density in Russia

3.1.3 OSPF Weights

The weights are inversely proportional to the bandwidth of the links and proportional to the

latency. We’ll assign higher weights to links farther from the Russian nodes to route more traffic

through Moscow and St. Petersburg to make up 30% of ISP connected to the Russian commercial

residential market. We can use OSPF as the routing protocol for the backbone network and assign

the following OSPF weights to the different links:

1. Core layer links: 10

(a) For example London - Moscow, London-Birmingham, London - Manchester, London -

Edinburgh, London - St. Petersburg, Moscow - St. Petersburg, Moscow - Rostov-on-

Don.

2. Distribution layer links: 20

(a) For example Birmingham - Edinburgh, Manchester - Birmingham, Manchester - Edin-

burgh, Moscow - St Petersburg, Moscow - Rostov-on-Don.

3. Access layer links: 30

(a) For example 200 users to 4 Wi-Fi 6, 802.11ax.

The given weights are an example and would be adjusted based on actual network performance

metrics and traffic patterns. The priority is to ensure that a significant portion of the traffic is

routed through Moscow and St Petersburg to cater to the 30% Russian market share. This design

aims to balance the traffic load efficiently while prioritizing the Russian segment of the network.

3

3.2. PROPOSED CAPACITY OF EACH LINK TAKING INTO ACCOUNT POPULATION IN
EACH REGION/CITY. [25%] 31

Regular monitoring and adjustments would be necessary to optimize performance as traffic patterns

evolve.

3.2 Proposed capacity of each link taking into account pop-

ulation in each region/city. [25%]

To determine the capacity of each link, we need to take into account the population in each

region/city. Assuming that the ISP has 30% of the market share in Russia. Based on this, we

can estimate the number of users in Russia and calculate the required link capacity. For Russia’s

population of 143,666,931 in 2014, 30% market share would mean 43,100,079 users. For a 100 Mbit

connection, the total required capacity for that Russia would be 4,310,007 Gbit/s.

Based on this calculation we can propose the following link capacities based on the population

in each city:

1. London - Moscow: 649,443.3 Gbit/s

2. Manchester - Moscow: 376,500 Gbit/s

3. Birmingham - Moscow: 394,500 Gbit/s

4. Edinburgh - Moscow: 375,900 Gbit/s

5. London - St Petersburg: 448,443.3 Gbit/s

6. Manchester - St Petersburg: 177,000 Gbit/s

7. Birmingham - St Petersburg: 196,500 Gbit/s

8. Edinburgh - St Petersburg: 178,950 Gbit/s

9. London - Manchester: 305,500 Gbit/s

10. London - Birmingham: 309,000 Gbit/s

11. London - Edinburgh: 304,900 Gbit/s

12. Manchester - Birmingham: 171,000 Gbit/s

13. Manchester - Edinburgh: 171,950 Gbit/s

14. Birmingham - Edinburgh: 171,450 Gbit/s

3

3.3. WIRESHARK 32

[29]

These link capacities should be sufficient to handle the traffic from the estimated number of

users in each region/city. However, the ISP should monitor the network traffic and upgrade the

link capacities if necessary. Given that the BT sees UK network traffic peak at 28 Terabits per

second during their busiest hour, the stated links are likely to be too high. With a ridiculous

4,471.586 Tb/s in total, strategies such as statistical multiplexing and data compression have to

be used for lower link capacities [30]

If we only consider the changes need to be made to the UK ISP to account for a 30% share of

the Russian market, we can propose the following link capacities that would support the network

at the necessary quality and provide 100 Mbits/s broadband for each user in Russia:

1. Core layer links: 100 Gbit/s

2. Distribution layer links: 10 Gbit/s

3. Access layer links: 1 Gbit/s

3.3 Wireshark

Using Wireshark imagine you are capturing a portion of the traffic in one of the routers in your

network. Use Python to analyze the performances of the network and the factors that influence

its functionality. [50%]

After capturing a portion of the traffic on one laptop (not in the router) we assumed that it

represents a portion of the network. After accessing multiple websites we then saved the data into

a .pcapng file and used the following tshark command to extract the data into a .csv file with an

additional column for ACK Numbers. Code available in Appendix C.1

tshark -r PATH_PCAP_FILE -T fields -e frame.number -e frame.time_epoch -e

frame.len -e frame.protocols -e eth.src -e eth.dst -e ip.src -e

ip.dst -e ip.proto -e ip.len -e ip.id -e tcp.srcport -e tcp.dstport

-e udp.srcport -e udp.dstport -e tcp.flags -e dns.qry.name -e

dns.resp.name -e http.request.method -e tcp.ack -E header=n -E

separator=, -E quote=d -E occurrence=f > ACK.csv

File available for download here:

3

3.3. WIRESHARK 33

https://drive.google.com/file/d/1WaUmVLKlCMb41QBkGN9ppjPRc6l5XoOZ/view?usp=sharing

3.3.1 Analysing the distribution of traffic (TCP vs. UDP)

These protocols have been the backbone of the Internet since the 80s. We have seen limited

adoption of new protocols because of the rigidity, or ossification, of the internet’s architecture.

This is a growing concern because the Internet’s historical changes have been slow and gradual

[31]. WhytheInternetonlyjustworksFile. Therefore it is important to analyse TCP and UDP

usage because they massively influence the network’s functionality.

As seen in Figure 3.4 the majority of packets were sent using the TCP protocol (82.1% compared

to a 17.9%). TCP (Transmission Control Prtocol) is mostly used for general web browsing, email-

ing, and for streaming pre-recorded content on sites like Netflix. TCP is connection-orientated,

flow controlled and accumulates ACKs (Acknowledgements). UDP (User Datagram Potocol) is

a connectionless protocol, with no handshaking between UDP sender and receiver. Unlike TCP,

UDP has no congestion control, and can therefore function when the network service is compro-

mised and exchange segments quickly although sometimes out of order. UDP is mostly used for

streaming multimedia apps, online gaming or DNS. For our case, this is a good balance between

UDP and TCP as TCP might be a bit slower but more reliable.

3.3.2 Analysisng TCP Fast Retransmissions, TCP Duplicate ACKS, and

ACK RTT

In order to analyse the functionality of the TCP protocol which is the majority of the network

packet transfers, we have to look at the nr of duplicate ACKs and how many Fast Retransmissions

there were. Duplicate ACKs occur when the same ACK number is seen and it is lower than the

last byte of data sent by the sender. If the receiver detects a gap in the sequence numbers, it will

generate a duplicate ACK for each subsequent packet it receives on that connection, until the miss-

ing packet is successfully received (retransmitted). This is a clear indication of dropped/missing

packets [32]. TCP Fast Retransmission occurs when the sender retransmits a packet before the

expiration of the acknowledgement timer. Senders receive some packets which sequence number are

bigger than the acknowledged packets. Senders should Fast Retransmit upon receipt of 3 duplicate

3

3.3. WIRESHARK 34

Figure 3.4: Pie Chart of the percentage of number of transmissions made over UDP and TCP
protocols in the Transport layer. Code available in Appendix C.1

ACKs. It is likely that the segment is lost and therefore it shouldn’t wait for timeout [33]. Lastly,

we also accounted for ACK Round-trip time (RTT).

Code available in Appendix C.3 To get this data we proceeded to do another Wireshark capture

for 150second where we accessed Russian websites during the capture and we used the following

filters to analyse the TCP protocol:

tcp.analysis.fast_retransmission

tcp.analysis.duplicate_ack

tcp.analysis.ack_rtt

Then we created a dataframe from the copied numbers and produced the results seen above.

During 150 seconds of web browsing, there were:

TCP Fast Retransmissions: 16

TCP Duplicate ACKs: 48

Average ACK Round-trip time (RTT): 105.8993710691824

Total nr of Packets: 63506

It is clear from the analysis that a small number of packets were lost and had to be re-

transmitted as seen for example, at the 70s - 80s markers in Figure 3.5. Compared to the complete

3

3.3. WIRESHARK 35

Figure 3.5: TCP Analysis from 150 seconds of captured data in Wireshark. Code available in
Appendix C.3

traffic of all packets, there was a small amount of retransmissions and therefore not a lot of lost

segments.

The Fast Retransmission and Duplicate ACKs figures make sense because for every 3 duplicate

ACKs, there was one fast retransmission. This is typical for TCP protocols and shows that the

network’s TCP congestion control functions normally.

Average ACK RTT could have been useful if Wireshark calculated it correctly. For a future

analysis the filter tcp.analysis.ack_rtt should not be used for calculating ACK RTT. We there-

fore calculated the RTT separately [34]. Code available in Appendix C.2

Average RTT: 0.009181104617253065

For our scenario this network functionality is considered standard and can be implemented for

the proposed topology. However, the assumptions made have to be taken into consideration. This

was not an analysis of a router, it was from a laptop and only tracked the client side. For specific

bottleneck links between the source and destination TCP CUBIC could be used. This increases

TCP’s sending rate until packet loss occurs at some router’s output and that is useful because we

can focus on the congested bottleneck link and understand the congestion.

4 4
Part 4 - Data Analytics

Contents
4.1 Data Visualization. [20%] . 37

4.1.1 Create visualisations illustrating the variation of each sensor’s value over
time. 37

4.1.2 Generate a count plot displaying the quantity of the unique labels of the
machine status. What insights can you derive from the histogram? . . . 37

4.2 Data Exploration: [40%] . 38
4.2.1 Plot the Pearson correlation of the data with a correlation coefficient

greater than 0.9. What insights we can derive based on the produced
results and task A.a? Is it possible to group any of the sensor data
together? If yes, could you provide an example of such a group? 38

4.2.2 Produce a table containing descriptive statistics, summarizing the central
tendency, dispersion and shape of a dataset’s distribution, for the sensor
data. 40

4.2.3 Compute the duration, in terms of the number of days, for which the
data was collected. 40

4.3 Data Pre-processing: [40%] . 41
4.3.1 Identify and count the number of null values per attribute, then remove

entries with null values. 41
4.3.2 Identify and count any duplicated entries and remove them from the

dataset. 41
4.3.3 Encode the data in the machine status column. 41
4.3.4 Determine the data types of the sensor data, and normalise the relevant

input features. 42

Consider an AI-assisted scenario centred around predictive maintenance for water pumps. In

this context, you’ve been given access to a dataset (sensor.csv) containing information from 52

distinct sensors, along with timestamps and the water pump’s status.

4

4.1. DATA VISUALIZATION. [20%] 37

4.1 Data Visualization. [20%]

4.1.1 Create visualisations illustrating the variation of each sensor’s

value over time.

Figure 4.1: Each sensor’s mean daily average value over time. Code in Appendix D.1

4.1.2 Generate a count plot displaying the quantity of the unique labels

of the machine status. What insights can you derive from the

histogram?

From Figure 4.2 we can see that only 7 water pumps were labelled with the status broken, and

14477 were recovering. Out of all the 220320 recordings, 93.4% were functioning normally, which

shows that a good part of all readings were water pump sensors that were registered as functioning

normally.

4

4.2. DATA EXPLORATION: [40%] 38

Figure 4.2: Quantity of unique labels of the machine status. Code in Appendix D.2

4.2 Data Exploration: [40%]

4.2.1 Plot the Pearson correlation of the data with a correlation coeffi-

cient greater than 0.9. What insights we can derive based on the

produced results and task A.a? Is it possible to group any of the

sensor data together? If yes, could you provide an example of such

a group?

The results from Figure 4.1, 4.3, 4.4 show that a big chunk of sensors have a strong positive

correlation with other sensors. This could mean that multiple sensors could have been placed on

one water pump such and sensor 19 and sensor 20. It could be possible to group sensor data

together such as sensors having a strong positive Pearson Correlation Coefficient of 0.96. Figure

4.4 would show that would be the sensors where the correlation coefficients are red-toned. We

would however suggest against that grouping because it could also be because there are many

water pumps in one area which causes the same reading fo a cluster of consecutive clusters [35].

4

4.2. DATA EXPLORATION: [40%] 39

Figure 4.3: Overall Pearson Correlation. Code in Appendix D.3

Figure 4.4: Pearson Correlation greater than 0.9. Code in Appendix D.4

4

4.2. DATA EXPLORATION: [40%] 40

Figure 4.5: Descriptive statistics, for each sensor. Code in Appendix D.5

4.2.2 Produce a table containing descriptive statistics, summarizing the

central tendency, dispersion and shape of a dataset’s distribution,

for the sensor data.

4.2.3 Compute the duration, in terms of the number of days, for which

the data was collected.

Code in Appendix D.6

Number of days: 152

4

4.3. DATA PRE-PROCESSING: [40%] 41

4.3 Data Pre-processing: [40%]

4.3.1 Identify and count the number of null values per attribute, then

remove entries with null values.

Null values for rows and columns were removed with code seen in Appendix D.7. Count of null

values can be seen in Figure 4.6

Figure 4.6: Count of Null Values for each sensor. Code in Appendix D.7

4.3.2 Identify and count any duplicated entries and remove them from

the dataset.

Code in Appendix D.8

No duplicate rows based on timestamp

4.3.3 Encode the data in the machine status column.

”NORMAL” was encoded to 0, ”BROKEN” to 1 and ”RECOVERING” to 2. Code below is part

of Appendix D.9

encoding words to categorical number

cleaned_df['machine_status'] = cleaned_df['machine_status'].replace('NORMAL',0)

cleaned_df['machine_status'] = cleaned_df['machine_status'].replace('BROKEN',1)

cleaned_df['machine_status'] =

cleaned_df['machine_status'].replace('RECOVERING',2)

#Print data frame to check if words were encoded

4

4.3. DATA PRE-PROCESSING: [40%] 42

cleaned_df

4.3.4 Determine the data types of the sensor data, and normalise the

relevant input features.

Data types were determined with code in Appendix D.10 The command cleaned_df.dtypes was

used to get the types of all data.

Unnamed: 0 int64

timestamp object

sensor_00 float64

sensor_01 float64

sensor_02 float64

sensor_03 float64

sensor_04 float64

sensor_05 float64

sensor_06 float64

sensor_07 float64

sensor_08 float64

sensor_09 float64

sensor_10 float64

sensor_11 float64

sensor_12 float64

sensor_13 float64

sensor_14 float64

sensor_16 float64

sensor_17 float64

sensor_18 float64

sensor_19 float64

sensor_20 float64

sensor_21 float64

sensor_22 float64

sensor_23 float64

...

sensor_49 float64

sensor_50 float64

4.3. DATA PRE-PROCESSING: [40%] 43

sensor_51 float64

machine_status int64

dtype: object

Figure 4.7: Sensor 1 before min-max normalisation. Code in Appendix D.10

Figure 4.8: Sensor 1 after min-max normalisation. Code in Appendix D.10

Figures 4.7 and 4.8. show how the normalisation affected the data of one sensor. The min max

normalisation was applied to every sensor because unlike Z-score, Min-Max normalisation guaran-

tees all features will have the exact same scale. This come at the price of Min-Max normalisation

not being able to handle outliers well. We want the exact same scale for every sensor to be able

to then compare the water pumps, based on location of the sensors and variance [36].

A A
Code Appendix Part 1

A.1 The impact on slotted Aloha‘s performance with differ-

ent packet arrival rates.

import random

import pandas as pd

import matplotlib.pyplot as plt

TSLOTS = 100000 # Define the total number of time slots for simulation

SLOT_SIZE = 1 # Assuming a fixed slot size for simplicity

class classNode:

def __init__(self, ttl, arrival_rate): # Time-to-live for a packet in the

node

self.ttl = ttl

self.queue = 0 # Queue to store incoming packets

self.arrival_rate = arrival_rate

def tick(self): # Simulate a time slot passing and decrease ttl

self.ttl -= 1

if random.random() < self.arrival_rate: # Simulate packet arrival

A

A.1. THE IMPACT ON SLOTTED ALOHA‘S PERFORMANCE WITH DIFFERENT
PACKET ARRIVAL RATES. 45

self.queue += 1

def main():

random.seed()

for window_size in [8]: # One window size

for arrival_rate in [0.016, 0.216, 0.416, 0.616, 0.816, 1]: #

Different packet arrival rates

Nlist, selist, throughput_list = [], [], []

for N in range(10, 100):

snode = [classNode(random.randrange(0, window_size),

arrival_rate) for _ in range(N)]

successful_slots = 0

for slot in range(TSLOTS): # Simulate each time slot

transmitted_nodes = []

for i in range(N):

if snode[i].queue > 0 and not snode[i].ttl:

transmitted_nodes.append(i)

snode[i].queue -= 1

snode[i].ttl = random.randrange(0, window_size)

else:

snode[i].tick()

if len(transmitted_nodes) == 1:

successful_slots += 1

if len(transmitted_nodes) > 1:

for j in transmitted_nodes:

snode[j].ttl = random.randrange(0, window_size)

slot_efficiency = successful_slots / float(TSLOTS)

throughput = successful_slots * SLOT_SIZE / float(TSLOTS)

print(f"Window: {window_size}, Arrival Rate: {arrival_rate}, N

= {N}: Efficiency: {slot_efficiency:.3f}, Throughput:

{throughput:.3f}")

A

A.2. ADJUSTED SLOT SIZE 46

Nlist.append(N)

selist.append(slot_efficiency)

throughput_list.append(throughput)

Plotting results

plt.plot(Nlist, selist, label=f"W = {window_size}, A =

{arrival_rate}")

plt.xlabel("# of Nodes")

plt.ylabel("Slot Efficiency")

plt.legend(loc='upper right')

plt.axis([0, 64, 0, 0.5])

plt.title('Slotted ALOHA Efficiency with Variable Arrival Rates')

plt.grid(linestyle='--')

plt.show()

if __name__ == "__main__":

main()

A.2 Adjusted slot size

import random

import pandas as pd

import matplotlib.pyplot as plt

TSLOTS = 100000 # Define the total number of time slots for simulation

SLOT_SIZE = 1 # Assuming a fixed slot size for simplicity

class classNode:

def __init__(self, ttl, arrival_rate): # Time-to-live for a packet in the

node

self.ttl = ttl

self.queue = 0 # Queue to store incoming packets

A

A.2. ADJUSTED SLOT SIZE 47

self.arrival_rate = arrival_rate

def tick(self): # Simulate a time slot passing and decrease ttl

self.ttl -= 1

if random.random() < self.arrival_rate: # Simulate packet arrival

self.queue += 1

def main():

random.seed()

for window_size in [8, 16, 32, 64, 128]: # Different window sizes

for arrival_rate in [0.816]: # Same packet arrival rates

Nlist, selist, throughput_list = [], [], []

for N in range(1, 64):

snode = [classNode(random.randrange(0, window_size),

arrival_rate) for _ in range(N)]

successful_slots = 0

for slot in range(TSLOTS): # Simulate each time slot

transmitted_nodes = []

for i in range(N):

if snode[i].queue > 0 and not snode[i].ttl:

transmitted_nodes.append(i)

snode[i].queue -= 1

snode[i].ttl = random.randrange(0, window_size)

else:

snode[i].tick()

if len(transmitted_nodes) == 1:

successful_slots += 1

if len(transmitted_nodes) > 1:

for j in transmitted_nodes:

snode[j].ttl = random.randrange(0, window_size)

slot_efficiency = successful_slots / float(TSLOTS)

throughput = successful_slots * SLOT_SIZE / float(TSLOTS)

A

A.2. ADJUSTED SLOT SIZE 48

print(f"Window: {window_size}, Arrival Rate: {arrival_rate}, N

= {N}: Efficiency: {slot_efficiency:.3f}, Throughput:

{throughput:.3f}")

Nlist.append(N)

selist.append(slot_efficiency)

throughput_list.append(throughput)

Plotting results

plt.plot(Nlist, selist, label=f"W = {window_size}, A =

{arrival_rate}")

plt.xlabel("# of Nodes")

plt.ylabel("Slot Efficiency")

plt.legend(loc='upper right')

plt.axis([0, 64, 0, 0.5])

plt.title('Slotted ALOHA Efficiency with Variable Arrival Rates')

plt.grid(linestyle='--')

plt.show()

if __name__ == "__main__":

main()

B

B
Code Appendix Part 2

B.1 Average Bit Error Rate

%matplotlib inline

!pip install pyphysim

import math

import sys

import numpy as np

from matplotlib import pyplot as plt

PyPhySim is a Python library for simulating the physical layer of digital

communications

from pyphysim import channels

from pyphysim.channels.fading import COST259_RAx , TdlChannel

from pyphysim.channels.fading_generators import JakesSampleGenerator

from pyphysim.modulators import OFDM, PSK, QAM

from pyphysim.modulators.ofdm import OfdmOneTapEqualizer

from pyphysim.util.misc import randn_c

from pyphysim.util.conversion import linear2dB

#Create list for all 60 BER

BER_list = []

B

B.1. AVERAGE BIT ERROR RATE 50

for _ in range(60):

Loop through 100 times

M = 16 # Size of the modulation constelation

Bandwidth that we can use for transmitting

bandwidth = 2.4e7 # in Hz

Parameters for simulating a real channel

noise_var = 1e-1 # Noise that we will have in our channel

Fd = 10 # Doppler frequency (in Hz)

Ts = 1. / bandwidth # Sampling interval

#Bit Rate and Symbol Rate

BR= 10e6

SR = BR / np.log2(M)

num_used_subcarriers = 600

subcarrierspacing= SR / num_used_subcarriers

fft_size = int(bandwidth / subcarrierspacing)

fft_size = 2**int (np.ceil(np.log2(fft_size))) # Ensure it's a power of 2

cp_size= int(fft_size / 10) # Adjust according to your requirements

num_ofdm_symbols = 10

num_symbols = num_ofdm_symbols * num_used_subcarriers

cp_size = 10 # Size of the OFDM cyclic interval (in samples)

qam = QAM(M)

ofdm = OFDM(fft_size, cp_size, num_used_subcarriers)

Generate some random data to modulate with QAM

data = np.random.randint(0, M, num_symbols)

Modulate the data

qam_symbols = qam.modulate(data)

B

B.1. AVERAGE BIT ERROR RATE 51

OFDM Modulate the QAM symbols

ofdm_symbols = ofdm.modulate(qam_symbols)

jakesObj = JakesSampleGenerator(Fd, Ts, L=20)

Creates the tapped delay line (TDL) channel model

tdlchannel = TdlChannel(jakesObj , COST259_RAx)

Transmit the ofdm modulated signal through the TDL channel

received_ofdm_symbols = tdlchannel.corrupt_data(ofdm_symbols)

Add random white noise

received_ofdm_symbols += math.sqrt(noise_var) * randn_c(

received_ofdm_symbols.size)

OFDM Demodulate received data (the last samples corresponding

only to channel memory are removed)

ofdm_demodulated_data = ofdm.demodulate(

received_ofdm_symbols[0:ofdm_symbols.size])

Reshape the demodulated data to make it easy to extract samples for each

individual OFDM symbol

ofdm_demodulated_data = np.reshape(ofdm_demodulated_data ,

[-1, num_used_subcarriers],

order='C')

received_ofdm_symbol1 = ofdm_demodulated_data[0]

ofdm_equalizer = OfdmOneTapEqualizer(ofdm)

Impulse response of the channel

The impulse response of a channel represents how a communication channel

or system responds to an impulse or a delta function input.

In other words, it characterizes how the channel distorts or modifies a

signal as it passes through.

impulse_response = tdlchannel.get_last_impulse_response()

B

B.2. QAM AND OFDM WITH AND WITHOUT NOISE 52

equalized_ofdm_demodulated_data = ofdm_equalizer.equalize_data(

ofdm_demodulated_data , impulse_response)

received_data = qam.demodulate(equalized_ofdm_demodulated_data)

ser = 1 - np.sum(data == received_data) / data.size

print("Symbol Error Rate: {0}".format(ser))

BER = ser / np.log2(M)

BER_list.append(BER)

print("Bit Error Rate: {0}".format(BER))

sum(BER_list)/60

B.2 QAM and OFDM with and without noise

%matplotlib inline

!pip install pyphysim

import math

import sys

import numpy as np

from matplotlib import pyplot as plt

PyPhySim is a Python library for simulating the physical layer of digital

communications

from pyphysim import channels

from pyphysim.channels.fading import COST259_RAx , TdlChannel

from pyphysim.channels.fading_generators import JakesSampleGenerator

from pyphysim.modulators import OFDM, PSK, QAM

from pyphysim.modulators.ofdm import OfdmOneTapEqualizer

from pyphysim.util.misc import randn_c

from pyphysim.util.conversion import linear2dB

##

We want a 16-QAM, so 16 QAM symbols

B

B.2. QAM AND OFDM WITH AND WITHOUT NOISE 53

One symbol will contain four bits

M = 16 # Size of the modulation constelation

#Bandwidth that we can use for transmitting

bandwidth = 2.4e7 # in Hz

Parameters for simulating a real channel

noise_var = 1e-1 # Noise that we will have in our channel

Fd = 10 # Doppler frequency (in Hz)

Ts = 1. / bandwidth # Sampling interval

BR= 10e6

SR = BR / np.log2(M)

OFDM parameters

fft_size = 1048 # Size of the Fast Fourier Transform

The choice of the FFT size is based on various factors, including the

available bandwidth , the need for subcarrier spacing,

and the desired trade-off between spectral efficiency and resistance to

frequency -selective fading. Smaller FFT sizes offer

#better frequency resolution but may be more susceptible to multipath

interference , while larger FFT sizes provide greater robustness

to channel conditions but may have a lower spectral efficiency.

num_used_subcarriers = 600

The choice of the number of subcarriers depends on the specific use case,

available spectrum , and the trade-offs between spectral

efficiency , resilience to channel impairments , and system complexity.

Smaller numbers of subcarriers may provide simplicity but may

not utilize the available bandwidth efficiently. Larger numbers of

subcarriers can provide higher data rates but may require more

processing and introduce challenges in handling frequency -selective fading

subcarrierspacing= SR / num_used_subcarriers

fft_size = int(bandwidth / subcarrierspacing)

fft_size = 2**int (np.ceil(np.log2(fft_size))) # Ensure it's a power of 2

#cp_size= int(fft_size / 10) # Adjust according to your requirements

B

B.2. QAM AND OFDM WITH AND WITHOUT NOISE 54

print (fft_size)

OFDM Symbols (unit of data transmission)

num_ofdm_symbols = 10

Number of QAM symbols that will be generated

num_symbols = num_ofdm_symbols * num_used_subcarriers

cp_size = 10 # Size of the OFDM cyclic interval (in samples)

print(cp_size)

The CP (Cyclic Prefix)is a copy of the last part of an OFDM symbol, which is

prefixed to the beginning of the symbol.

It helps in mitigating mulipath interference , syncronization and

Inter-Symbol Interference

##

Creates the required objects

qam = QAM(M)

ofdm = OFDM(fft_size, cp_size, num_used_subcarriers)

Generate some random data to modulate with QAM

data = np.random.randint(0, M, num_symbols)

Modulate the data

qam_symbols = qam.modulate(data)

OFDM Modulate the QAM symbols

ofdm_symbols = ofdm.modulate(qam_symbols)

################################### PLOT

#######################################

fig, ax = plt.subplots(figsize=(6, 6))

ax.plot(np.real(qam_symbols), np.imag(qam_symbols), 'r*')

ax.set_title('QAM symbols')

ax.axis("equal")

B

B.2. QAM AND OFDM WITH AND WITHOUT NOISE 55

################################### PLOT

#######################################

fig2, ax2 = plt.subplots(figsize=(8, 8))

ax2.plot(np.real(ofdm_symbols), np.imag(ofdm_symbols), 'r*')

ax2.axis('equal')

##

Create a jakes object with 20 rays. This is the fading model that controls

how the channel vary in time.

In wireless communications , the Jakes model is a mathematical model that

simulates the behavior of a multipath fading channel.

It's often used in simulations to mimic the effects of signal propagation in

a real-world environment , where signals can

experience fading due to reflections , diffraction , and scattering. The 20

rays represent individual signal paths.

This will be passed to the TDL channel object.

jakesObj = JakesSampleGenerator(Fd, Ts, L=20)

Creates the tapped delay line (TDL) channel model

tdlchannel = TdlChannel(jakesObj, COST259_RAx)

Transmit the ofdm modulated signal through the TDL channel

received_ofdm_symbols = tdlchannel.corrupt_data(ofdm_symbols)

Add random white noise

received_ofdm_symbols += math.sqrt(noise_var) * randn_c(

received_ofdm_symbols.size)

OFDM Demodulate received data (the last samples corresponding

only to channel memory are removed)

ofdm_demodulated_data = ofdm.demodulate(

received_ofdm_symbols[0:ofdm_symbols.size])

Reshape the demodulated data to make it easy to extract samples for each

individual OFDM symbol

ofdm_demodulated_data = np.reshape(ofdm_demodulated_data ,

B

B.2. QAM AND OFDM WITH AND WITHOUT NOISE 56

[-1, num_used_subcarriers],

order='C')

received_ofdm_symbol1 = ofdm_demodulated_data[0]

################################### PLOT

#######################################

fig3, ax3 = plt.subplots(figsize=(12, 8))

ax3.plot(np.real(received_ofdm_symbol1), np.imag(received_ofdm_symbol1), 'r*')

ax3.set_title('First demodulated OFDM symbol')

ax3.axis('equal')

############################## EQUALIZER

####################################

ofdm_equalizer = OfdmOneTapEqualizer(ofdm)

Impulse response of the channel

The impulse response of a channel represents how a communication channel or

system responds to an impulse or a delta function input.

In other words, it characterizes how the channel distorts or modifies a

signal as it passes through.

impulse_response = tdlchannel.get_last_impulse_response()

equalized_ofdm_demodulated_data = ofdm_equalizer.equalize_data(

ofdm_demodulated_data , impulse_response)

#################################### PLOT

######################################

plt.figure(figsize=(8, 8))

plt.plot(np.real(equalized_ofdm_demodulated_data),

np.imag(equalized_ofdm_demodulated_data), 'r*')

plt.title('QAM symbols transmitted in the OFDM symbols')

plt.xlim([-1.15, 1.15])

B

B.3. IMPULSE RESPONSE CHARACTERISTICS BASED IN TIME AND FREQUENCY 57

plt.ylim([-1.15, 1.15])

plt.xlabel('Real part')

plt.ylabel('Imaginary part')

plt.show()

############### Symbol Error Rate and Bit Error Rate ##########################

received_data = qam.demodulate(equalized_ofdm_demodulated_data)

ser = 1 - np.sum(data == received_data) / data.size

print("Symbol Error Rate: {0}".format(ser))

BER = ser / np.log2(M)

print("Bit Error Rate: {0}".format(BER))

B.3 Impulse Response Characteristics based in Time and

Frequency

ofdm_equalizer = OfdmOneTapEqualizer(ofdm)

Impulse response of the channel

The impulse response of a channel represents how a communication channel or

system responds to an impulse or a delta function input.

In other words, it characterizes how the channel distorts or modifies a

signal as it passes through.

impulse_response = tdlchannel.get_last_impulse_response()

equalized_ofdm_demodulated_data = ofdm_equalizer.equalize_data(

ofdm_demodulated_data , impulse_response)

print(impulse_response)

################################ Time based

####################################

#Assuming impulse_response is an instance of TdlImpulseResponse

values_time = impulse_response.tap_values_sparse

B

B.3. IMPULSE RESPONSE CHARACTERISTICS BASED IN TIME AND FREQUENCY 58

#################################### PLOT

######################################

plt.figure(figsize=(10,6))

plt.plot(values_time.T)

plt.title('TDL Channel Impulse Response Time Domain')

plt.xlabel('Time (Sec)')

plt.ylabel('Amplitude')

plt.grid(True)

plt.show

################################ Frequency based

################################

values_frequency = impulse_response.tap_values_sparse

print(impulse_response)

fft_result = np.fft.fft(impulse_response , axis=0)

fft_result = np.ravel(impulse_response , axis=0)

frequencies = np.fft.fftfreq(len(values_frequency),

d=impulse_response.cannel.profile.Ts)

#################################### PLOT

######################################

plt.figure(figsize=(10,6))

plt.plot(frequencies.T)

plt.title('TDL Channel Impulse Response Frequency Domain')

plt.xlabel('Time (Sec)')

plt.ylabel('Frequency (Hz)')

plt.grid(True)

plt.show

C

C
Code Appendix Part 3

C.1 TCP vs UDP

Importing libraries

import numpy as np

import pandas as pd

from datetime import datetime

import sys

import matplotlib.pyplot as plt

import seaborn as sns

from io import StringIO

Reading data

traffic = pd.read_csv('/content/ACK.csv',sep='\t')

yicam = pd.read_csv('/content/ACK.csv', delimiter=",") #, names = columns)

yicam

Setting the column names, and user IP address

dev_ip = "10.97.252.163"

columns =

["frame_number","frame_time_epoch","frame_len","frame_protocols","eth_src","eth_dst","ip_src","ip_dst","ip_proto","ip_len","ip_id","tcp_srcport","tcp_dstport","udp_srcport","udp_dstport","tcp_flags","dns_qry_name","dns_resp_name","http_request_method",

"ACK"]

C

C.1. TCP VS UDP 60

df = pd.read_csv('/content/ACK.csv', delimiter=",", names = columns,

skiprows=[0])

df

##

Comparing UDP vs TCP protocols

##

check for when tcp_srcport & tcp_dstport are NOT NAN and ACK is NAN

df[

(~df['tcp_srcport'].isna()) &

(~df['tcp_dstport'].isna()) &

(df['ACK'].isna())

].shape[0]

check for when udp_srcport & udp_dstport are NOT NAN and ACK is NOT NAN

df[

(~df['udp_srcport'].isna()) &

(~df['udp_dstport'].isna()) &

(~df['ACK'].isna())

].shape[0]

tcp_srcport_num = df.shape[0] - df['tcp_srcport'].isna().sum()

tcp_dstport_num = df.shape[0] - df['tcp_dstport'].isna().sum()

tcp_srcport_num == tcp_dstport_num

pct_tcp = round((tcp_dstport_num)/df.shape[0]*100,2)

udp_srcport_num = df.shape[0] - df['udp_srcport'].isna().sum()

udp_dstport_num = df.shape[0] - df['udp_dstport'].isna().sum()

udp_srcport_num == udp_dstport_num

pct_udp = round((udp_dstport_num)/df.shape[0]*100,2)

#################################### PLOT

######################################

C

C.1. TCP VS UDP 61

Data for plotting

labels = ['TCP', 'UDP']

sizes = [pct_tcp, pct_udp]

colors = ['#FC5A50', '#E6DAA6'] # Professional color palette (blue and orange)

textprops = {"fontsize": 16}

Create the pie chart

plt.figure(figsize=(8, 6))

plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=colors,

textprops=textprops)

plt.title("Percentage of UDP & TCP Protocols of the MAC Layer(%)")

plt.show()

##

Measuring Acknowledgments

##

Reload the data

data_path = '/content/ACK.csv'

data = pd.read_csv(data_path)

Access the last column as a Series

last_column = data.iloc[:, -1]

Initialize the dictionaries

consecutive_starts = {}

consecutive_lengths = {}

Initialize counters

count = 0

current_number = None

Count consecutive repetitions

for i in range(len(last_column)):

C

C.1. TCP VS UDP 62

if i == 0 or last_column.iloc[i] == current_number:

count += 1

current_number = last_column.iloc[i]

else:

if count > 1: # Only consider sequences of length > 1

consecutive_starts[current_number] =

consecutive_starts.get(current_number , 0) + 1

consecutive_lengths[current_number] =

consecutive_lengths.get(current_number , []) + [count]

count = 1

current_number = last_column.iloc[i]

Check the last element

if count > 1:

consecutive_starts[current_number] =

consecutive_starts.get(current_number , 0) + 1

consecutive_lengths[current_number] =

consecutive_lengths.get(current_number , []) + [count]

The 'consecutive_starts' dictionary contains the count of how many times

each ACK number starts a consecutive sequence.

The 'consecutive_lengths' dictionary contains the lengths of these sequences

for each ACK number.

For example, ACK: 1.0 has 26 sequences which can be seen in the consecutive

lengths [2, 3, 3, 3, 12, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2,

2, 3, 3, 3, 4].

print("Consecutive Starts:", consecutive_starts)

print("Consecutive Lengths:", consecutive_lengths)

Filter the dictionary to include only ACK numbers with consecutive starts >

10

filtered_consecutive_starts = {num: starts for num, starts in

consecutive_starts.items() if starts > 10}

Extracting the ACK numbers and their respective starts for plotting

filtered_numbers = list(filtered_consecutive_starts.keys())

filtered_starts = list(filtered_consecutive_starts.values())

C

C.2. AVERAGE RTT 63

#################################### PLOT

######################################

plt.figure(figsize=(10, 6))

ax = sns.barplot(x=filtered_numbers , y=filtered_starts , palette='Set2')

Add values above bars

for bar in ax.patches:

height = bar.get_height()

ax.text(bar.get_x() + bar.get_width() / 2., height + 1, int(height),

ha='center')

plt.xlabel('ACK Number')

plt.ylabel('Count of Consecutive Sequence Starts')

plt.title('Consecutive Sequence Starts Greater than 10 for each ACK Number')

plt.xticks(rotation=0) # Rotate labels for readability

plt.show()

C.2 Average RTT

##

Calculating RTT

##

Load a small sample of the data to understand its structure

file_path = '/content/ACK.csv'

Reload the data with correct headers

full_data = pd.read_csv(file_path)

Displaying the first few rows of the reloaded data for verification

full_data.head()

Column names as provided by the user

C

C.2. AVERAGE RTT 64

columns = ["frame_number", "frame_time_epoch", "frame_len", "frame_protocols",

"eth_src", "eth_dst",

"ip_src", "ip_dst", "ip_proto", "ip_len", "ip_id", "tcp_srcport",

"tcp_dstport",

"udp_srcport", "udp_dstport", "tcp_flags", "dns_qry_name",

"dns_resp_name",

"http_request_method", "ACK"]

Reload the data with the specified column names and skipping the first row

network_data = pd.read_csv(file_path , names=columns, skiprows=1)

Displaying the first few rows of the data for verification

network_data.head()

Filter for TCP packets (ip_proto = 6)

tcp_packets = network_data[network_data['ip_proto'] == 6]

Filter for TCP packets (ip_proto = 6) and create a copy

tcp_packets = network_data[network_data['ip_proto'] == 6].copy()

Inspect the first few rows of the filtered TCP packets

tcp_packets.head()

Function to check if ACK flag is set in tcp_flags

def is_ack_flag_set(tcp_flag_value):

try:

Convert hex string to integer and check if the ACK bit (0x10) is set

return int(tcp_flag_value , 16) & 0x10 == 0x10

except:

In case of invalid format or NaN values

return False

Apply the function to identify ACK packets

tcp_packets['is_ack'] = tcp_packets['tcp_flags'].apply(is_ack_flag_set)

C

C.2. AVERAGE RTT 65

Separate ACK packets and non-ACK packets

ack_packets = tcp_packets[tcp_packets['is_ack']]

non_ack_packets = tcp_packets[~tcp_packets['is_ack']]

Display the first few rows of ACK packets and non-ACK packets for

verification

ack_packets.head(), non_ack_packets.head()

Function to calculate round-trip time (RTT)

def calculate_rtt(ack_packets):

Sort the packets by frame number

sorted_ack_packets = ack_packets.sort_values(by='frame_number')

Initialize a list to store RTT values

rtt_values = []

Iterate over the sorted packets to calculate RTT

for i in range(len(sorted_ack_packets) - 1):

current_packet = sorted_ack_packets.iloc[i]

next_packet = sorted_ack_packets.iloc[i + 1]

Calculate the time difference between consecutive ACK packets

time_diff = next_packet['frame_time_epoch'] -

current_packet['frame_time_epoch']

rtt_values.append(time_diff)

return rtt_values

Calculate RTT values for ACK packets

rtt_values = calculate_rtt(ack_packets)

Compute average RTT

average_rtt = np.mean(rtt_values) if rtt_values else np.nan

Display the average RTT

print("Average RTT:", average_rtt)

C

C.3. TCP ANALYSIS 66

C.3 TCP Analysis

##

TCP Analysis

##

Data from Wireshark taken as a string

data_str2 = """

0,4,26,0,0

1,0,9,0,0

2,0,4,0,0

3,0,1,0,0

4,2,9,0,0

5,0,12,0,0

6,21,121,0,0

7,0,4,0,0

8,0,1,0,0

9,2,30,0,0

10,50,197,0,0

11,49,350,0,0

12,40,857,0,0

13,98,1853,0,0

14,175,562,0,0

15,20,53,0,0

16,63,192,0,0

17,24,75,0,1

18,3,71,0,0

19,49,259,0,0

20,1,178,0,0

21,1,900,0,0

22,59,218,0,0

23,9,33,0,0

24,9,19,0,0

C

C.3. TCP ANALYSIS 67

25,6,26,0,0

26,10,23,0,0

27,11,27,0,0

28,3,12,0,0

29,1,6,0,0

30,4,19,0,0

31,0,0,0,0

32,0,70,0,0

33,0,6,0,0

34,2,8,0,0

35,0,5,0,0

36,1,79,0,0

37,0,152,0,0

38,1,694,0,0

39,10,395,0,0

40,11,52,0,0

41,7,41,0,0

42,21,63,0,0

43,425,1085,0,3

44,915,2607,0,1

45,805,2674,1,148

46,399,1125,0,1

47,1,21,0,0

48,4,23,0,0

49,42,116,0,0

50,198,585,0,0

51,505,1342,1,72

52,501,1494,0,0

53,174,514,0,0

54,13,52,0,1

55,1,13,0,0

56,1,3,0,0

57,5,13,0,0

58,5,17,0,0

59,4,20,0,0

60,0,86,0,0

61,0,48,0,0

C

C.3. TCP ANALYSIS 68

62,1,75,0,0

63,0,7,0,0

64,3,62,0,0

65,0,4,0,0

66,17,41,0,2

67,103,409,1,51

68,124,376,0,35

69,124,596,1,128

70,606,1657,0,22

71,974,2811,0,5

72,344,985,0,7

73,191,729,2,108

74,244,819,1,74

75,261,913,0,100

76,220,865,1,128

77,251,926,1,102

78,295,1047,1,100

79,207,929,0,155

80,223,885,1,137

81,251,875,0,89

82,221,892,2,136

83,16,61,0,4

84,2,8,0,0

85,0,8,0,0

86,7,22,0,0

87,5,75,0,0

88,2,20,0,1

89,51,179,0,0

90,18,57,0,5

91,208,868,0,151

92,98,350,2,42

93,0,7,0,0

94,5,39,0,0

95,25,52,0,1

96,4,10,0,0

97,862,2542,0,6

98,663,1952,0,5

C

C.3. TCP ANALYSIS 69

99,21,49,0,0

100,6,28,0,0

101,1,4,0,0

102,3,15,0,0

103,2,22,0,1

104,5,31,0,0

105,2,42,0,0

106,0,87,0,0

107,0,165,0,0

108,20,1233,0,0

109,13,713,0,0

110,4,129,0,0

111,3,14,0,0

112,0,55,0,0

113,9,18,0,0

114,2,7,0,0

115,8,16,0,0

116,5,88,0,0

117,4,20,0,0

118,26,77,0,0

119,250,841,1,47

120,80,288,0,1

121,80,224,0,1

122,31,133,0,0

123,2,17,0,0

124,15,65,0,0

125,99,684,1,23

126,20,789,0,0

127,2,95,0,0

128,0,6,0,0

129,2,7,0,0

130,2,70,0,0

131,12,113,0,0

132,5,47,0,0

133,2,12,0,0

134,2,4,0,0

135,2,33,0,0

C

C.3. TCP ANALYSIS 70

136,289,1067,1,124

137,157,466,0,0

138,0,62,0,0

139,2,41,0,0

140,17,91,0,1

141,4,197,0,0

142,8,49,0,0

143,15,883,0,1

144,85,555,0,0

145,984,2613,3,92

146,822,2472,0,1

147,656,1963,0,12

148,611,1783,0,3

149,509,1429,0,4

150,259,920,0,72

151,5,13,0,0

152,0,13,0,0

153,5,10,0,0

154,7,16,0,0

155,13,29,0,0

156,90,332,0,15

157,169,556,0,30

158,0,2,0,0

"""

Create a DataFrame from the data string

df = pd.read_csv(StringIO(data_str2), header=None)

Save the DataFrame to a CSV file

df.to_csv('output.csv2', index=True)

#Defining file

file_path = '/content/output.csv2'

Reload the data with correct headers

C

C.3. TCP ANALYSIS 71

full_data = pd.read_csv(file_path)

df = pd.DataFrame(full_data)

#Assigning new column names

new_columns = {'0':'Id',

'1': 'ACK Round-trip time (RTT)',

'2': 'All Packets',

'3': 'TCP Fast Retransmission',

'4': 'TCP Duplicate ACK'}

df.rename(columns=new_columns , inplace=True)

df

Extract the data

interval = df['Id']

tcp_analysis_ack_rtt = df['ACK Round-trip time (RTT)']

packets = df['All Packets']

tcp_analysis_fast_retransmission = df['TCP Fast Retransmission']

tcp_analysis_duplicate_ack = df['TCP Duplicate ACK']

#################################### PLOT

######################################

plt.figure(figsize=(16,7))

plot lines

plt.plot(interval , packets, color='silver', linewidth=0.7, label = "All

Packets")

plt.plot(interval , tcp_analysis_ack_rtt , color='#FC5A50', linewidth=1,

label="ACK Round-trip time (RTT)")

plt.plot(interval , tcp_analysis_duplicate_ack , color='#029386', linewidth=1,

label = "TCP Duplicate ACK")

plt.xlabel("Time (seconds)")

plt.ylabel("Packets / seconds")

#plt.legend(loc='lower right', ncol=1)

plt.legend()

C

C.3. TCP ANALYSIS 72

################################# Counting

#####################################

TCP Fast Retransmission count

count_fast_re = (df['TCP Fast Retransmission'] != 0).sum()

print("TCP Fast Retransmission count:", count_fast_re)

Counting Duplicate ACKs

count_duplicate_acks = (df['TCP Duplicate ACK'] != 0).sum()

print("TCP Duplicate ACK count:", count_duplicate_acks)

ACK_Round -trip time_(RTT) average

ack_mean = df["ACK Round-trip time (RTT)"].mean()

print("Average ACK Round-trip time (RTT):", ack_mean)

TCP Fast Retransmission count

total_packets= (df['All Packets']).sum()

print("Total nr of Packets:", total_packets)

df

D

D
Code Appendix Part 4

D.1 Variation of sensors over time

#Importing libraries

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import matplotlib.cm as cm

#Reading the data

file_path = r'C:\Users\Ema\Documents\UCL\UCL 3\Networking

Systems\Data\sensor.csv'

df = pd.read_csv(file_path)

df= df.iloc[:,1:-1]

#plot average hourly

test_df = df.copy() # make a copy of df

test_df['timestamp'] = pd.to_datetime(test_df['timestamp']) # convert

timestamp to datetime format

test_df.set_index('timestamp', inplace = True)

hourly_df = test_df.resample('H').mean() # get hourly mean (so each row

is per hour)

hourly_df.reset_index(inplace=True)

D

D.1. VARIATION OF SENSORS OVER TIME 74

daily_df = test_df.resample('D').mean() # get daily mean (so each row

is per day)

daily_df.reset_index('timestamp', inplace=True)

daily_df.columns = daily_df.columns.str.replace('_', ' ')

daily_df.columns = daily_df.columns.str.replace('', '')

################################## PLOT ###################################

Choose a colormap (e.g., 'viridis', 'plasma', 'inferno', 'magma', 'cividis')

colormap = cm.magma

Generate colors from the colormap

num_lines = len(daily_df.columns) - 1 # Number of lines to plot (excluding

the timestamp column)

colors = [colormap(i / num_lines) for i in range(num_lines)]

plt.figure(figsize=(20, 11))

Iterate over the columns to plot each one with a color from the colormap

for idx, column in enumerate(daily_df.columns[1:]): # Skip the 'timestamp'

column

plt.plot(daily_df['timestamp'], daily_df[column], label=column,

color=colors[idx])

selected_dates = daily_df['timestamp'][::6]

formatted_dates = selected_dates.dt.strftime("%d-%b")

plt.xticks(selected_dates , formatted_dates , rotation=60, ha='right')

plt.xlabel("Date (2018)")

plt.ylabel("Sensor Values")

plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.tight_layout()

plt.show()

D

D.2. UNIQUE LABELS COUNT 75

D.2 Unique Labels Count

#Reading the data

file_path = r'C:\Users\Ema\Documents\UCL\UCL 3\Networking

Systems\Data\sensor.csv'

df = pd.read_csv(file_path)

df

#Looking at the type of data

df['machine_status'].dtype

df.dtypes

#Isolating the last column

status = df. iloc[:,-1:]

Counting the occurrences of each machine status

status_counts = status['machine_status'].value_counts()

Plotting the histogram with count labels on each bar

plt.figure(figsize=(8, 6))

bars = plt.bar(status_counts.index, status_counts.values)

Adding count labels above each bar

for bar in bars:

yval = bar.get_height()

plt.text(bar.get_x() + bar.get_width()/2, yval, int(yval), va='bottom',

ha='center')

################################## PLOT ###################################

plt.title('Histogram of Machine Status Labels with Counts')

plt.xlabel('Machine Status')

plt.ylabel('Count')

plt.xticks(rotation=0)

plt.show()

D

D.3. GENERAL PEARSON CORRELATION 76

D.3 General Pearson Correlation

#Reading the data

file_path = r'C:\Users\Ema\Documents\UCL\UCL 3\Networking

Systems\Data\sensor.csv'

df = pd.read_csv(file_path)

df

Calculate the Pearson correlation matrix

correlation_matrix = df.corr()

Find pairs with a correlation greater than 0.9 (excluding self-correlation)

correlated_pairs = [(i, j) for i in correlation_matrix.columns for j in

correlation_matrix.columns

if (i != j) and (abs(correlation_matrix.loc[i, j]) > 0.9)]

correlated_pairs , len(correlated_pairs)

################################## PLOT ###################################

Setting up the matplotlib figure

plt.figure(figsize=(20, 15))

Draw the heatmap

sns.heatmap(correlation_matrix , annot=False, cmap='coolwarm', linewidths=.5)

Adding title and labels

plt.title('Heatmap of Pearson Correlation Coefficients', fontsize=20)

plt.xticks(fontsize=10)

plt.yticks(fontsize=10)

Show the plot

plt.show()

D

D.4. PEARSON CORRELATION FOR 0.9 77

D.4 Pearson Correlation for 0.9

Load the dataset

file_path = r'C:\Users\Ema\Documents\UCL\UCL 3\Networking

Systems\Data\sensor.csv'

df = pd.read_csv(file_path)

data= df.iloc[:,2:-20]

Display the first few rows of the dataset to understand its structure

data.head()

Calculate the Pearson correlation matrix

correlation_matrix = data.corr()

Find pairs with a correlation greater than 0.9 (excluding self-correlation)

correlated_pairs = [(i, j) for i in correlation_matrix.columns for j in

correlation_matrix.columns

if (i != j) and (abs(correlation_matrix.loc[i, j]) > 0.9)]

Print the correlated pairs and their count

print(correlated_pairs , len(correlated_pairs))

################################## PLOT ###################################

Setting up the matplotlib figure

plt.figure(figsize=(20, 15))

Modifying the correlation matrix to only show values above 0.9

Set values below 0.9 to NaN

filtered_corr_matrix = correlation_matrix.where(np.abs(correlation_matrix) >

0.9, np.nan)

Draw the heatmap with the filtered matrix

sns.heatmap(filtered_corr_matrix , annot=False, cmap='coolwarm', linewidths=.5)

Adding title and labels

D

D.5. DESCRIPTIVE STATISTICS 78

plt.title('Heatmap of Pearson Correlation Coefficients (only greater than

0.9)', fontsize=20)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

Show the plot

plt.show()

D.5 Descriptive Statistics

import pandas as pd

import matplotlib.pyplot as plt

Load the dataset

file_path = r'C:\Users\Ema\Documents\UCL\UCL 3\Networking

Systems\Data\sensor.csv'

df = pd.read_csv(file_path)

sensor_data= df.iloc[:,2:-1]

sensor_data.head()

Computing descriptive statistics

descriptive_stats = sensor_data.describe()

Displaying the descriptive statistics

descriptive_stats.T

descriptive_stats.T.head()

#Export to Excel

descriptive_stats.to_excel('excel sum stats.xlsx')

Function to format numbers to one decimal place

def format_to_1dp(x):

return '{:.1f}'.format(x)

D

D.6. NUMBER OF DAYS 79

Applying the formatting to the summary statistics dataframe

formatted_summary = descriptive_stats.applymap(format_to_1dp)

Creating a figure to hold the table

fig, ax = plt.subplots(figsize=(12, 4)) # Adjust the size as needed

ax.axis('tight')

ax.axis('off')

Creating the table

table = ax.table(cellText = formatted_summary.T.values,

colLabels = formatted_summary.T.columns,

rowLabels = formatted_summary.T.index,

cellLoc='center',

loc='center')

table.auto_set_font_size(True)

table.set_fontsize(12)

table.scale(2, 2)

Adjust layout

plt.tight_layout()

plt.show()

D.6 Number of days

#Importing libraries

import pandas as pd

from datetime import datetime

#Reading the data

D

D.7. COUNTING NULL VALUES AND REMOVING THEM 80

file_path = r'C:\Users\Ema\Documents\UCL\UCL 3\Networking

Systems\Data\sensor.csv'

df = pd.read_csv(file_path)

dates = pd.to_datetime(df['timestamp']).apply(lambda x: x.date())

Create two datetime objects

date1 = datetime(2018, 4 ,1)

date2 = datetime(2018, 8, 31)

Calculate the number of days between the two dates

delta = date2 - date1

num_days = delta.days

print(num_days)

D.7 Counting null values and removing them

import pandas as pd

Created a test dataframe where all null values are dropped

#Reading the data

file_path = r'C:\Users\Ema\Documents\UCL\UCL 3\Networking

Systems\Data\sensor.csv'

df = pd.read_csv(file_path)

df = df.drop('sensor_15', axis=1) # Remove sensor_15 column because

all values are null

df.iloc[:,14:19] # check sensor 15 is gone

Exporting to Excel

df.T.to_excel('Count of null values .xlsx')

test_df = df.dropna() # Drop all other rows that have

null values

test_df.isnull().sum(axis=1)

D

D.8. COUNTING DUPLICATE ENTRIES 81

test_df # Checks most values are still

there (119103 rows)

#Checks the number of null values in each row for test_df, converts it to a

list and checks the sum of the lits.

sum(test_df.isnull().sum(axis=1).tolist())

D.8 Counting duplicate entries

import pandas as pd

#Reading the data

file_path = r'C:\Users\Ema\Documents\UCL\UCL 3\Networking

Systems\Data\sensor.csv'

df = pd.read_csv(file_path)

df = df.drop('sensor_15', axis=1)

cleaned_df = df.dropna()

drop_duplicate_df = cleaned_df.drop_duplicates(subset=['timestamp'])

if cleaned_df.shape[0] == drop_duplicate_df.shape[0]:

print("No duplicate rows based on timestamp")

D.9 Encoding the data in the machine status column

encoding words to categorical number

cleaned_df['machine_status'] = cleaned_df['machine_status'].replace('NORMAL',0)

cleaned_df['machine_status'] = cleaned_df['machine_status'].replace('BROKEN',1)

cleaned_df['machine_status'] =

cleaned_df['machine_status'].replace('RECOVERING',2)

cleaned_df

D.10. DATA TYPES AND NORMALISATION 82

D.10 Data types and normalisation

import seaborn as sns

import matplotlib.pyplot as plt

#Printing data types

cleaned_df.dtypes

#Plotting sensor 1 before normalisation

sns.histplot(cleaned_df['sensor_01'], kde=True)

plt.title('Sensor_01 clean data before normalisation', fontsize=10)

plt.show()

#defining the min-max normalisation function

def min_max_normalize_row(row):

min_value = row.min()

max_value = row.max()

return (row - min_value) / (max_value - min_value)

#Checking normalisation worked

cleaned_df.iloc[:,2:-1]

#Creating normalised dataset for every row

normalised_df = cleaned_df.iloc[:,2:-1].apply(min_max_normalize_row , axis=1)

normalised_df

################################## PLOT ###################################

sns.histplot(normalised_df['sensor_01'], kde=True)

plt.title('Sensor_01 clean data after normalisation', fontsize=10)

plt.show()

Bibliography

[1] A. F. Molisch, Wireless communications, 2nd ed. Chichester, West Sussex, U.K: Wiley : IEEE,

2011, 827 pp., OCLC: ocn613645390, isbn: 978-0-470-74187-0 978-0-470-74186-3. (visited on

11/10/2023).

[2] B. Sklar, Digital communications: fundamentals and applications, 3rd ed. Hoboken: Pearson

Education, Inc, 2020, isbn: 978-0-13-458856-8. (visited on 11/11/2023).

[3] D. P. Bertsekas, R. G. Gallager, and R. Gallager, Data networks (Prentice-Hall International

editions), 2. ed. Englewood Cliffs, NJ: Prentice-Hall International, 1992, 556 pp., isbn: 978-

0-13-200916-4 978-0-13-201674-2. [Online]. Available: https://web.mit.edu/dimitrib/

www/Multiaccess_Data_Nets.pdf (visited on 11/15/2023).

[4] A. A. Kumar S., K. Ovsthus, and L. M. Kristensen., “An industrial perspective on wireless

sensor networks — a survey of requirements, protocols, and challenges,” IEEE Commu-

nications Surveys & Tutorials, vol. 16, no. 3, pp. 1391–1412, 2014, issn: 1553-877X. doi:

10.1109/SURV.2014.012114.00058. [Online]. Available: http://ieeexplore.ieee.org/

document/6728782/ (visited on 11/11/2023).

[5] J. Gao, M. Li, W. Zhuang, Xuemin, Shen, and X. Li, “MAC for machine type communications

in industrial IoT – part II: Scheduling and numerical results,” 2020, Publisher: arXiv Version

Number: 1. doi: 10.48550/ARXIV.2011.11139. [Online]. Available: https://arxiv.org/

abs/2011.11139 (visited on 11/11/2023).

[6] B. A. Forouzan and S. C. Fegan, Data communications and networking (McGraw-Hill Forouzan

networking series), 4th ed. New York: McGraw-Hill Higher Education, 2007, 1134 pp., OCLC:

ocm62878618, isbn: 978-0-07-325032-8 978-0-07-296775-3. (visited on 12/06/2023).

[7] mtsokol. “Numpy/numpy/fft/pocketfft.” (2023), [Online]. Available: https://github.com/

numpy/numpy/blob/main/numpy/fft/_pocketfft.py (visited on 12/10/2023).

[8] Postscapes. “Internet of thinks protocols.” (2020), [Online]. Available: https://www.postscapes.

com/internet-of-things-protocols/ (visited on 12/10/2023).

https://web.mit.edu/dimitrib/www/Multiaccess_Data_Nets.pdf
https://web.mit.edu/dimitrib/www/Multiaccess_Data_Nets.pdf
https://doi.org/10.1109/SURV.2014.012114.00058
http://ieeexplore.ieee.org/document/6728782/
http://ieeexplore.ieee.org/document/6728782/
https://doi.org/10.48550/ARXIV.2011.11139
https://arxiv.org/abs/2011.11139
https://arxiv.org/abs/2011.11139
https://github.com/numpy/numpy/blob/main/numpy/fft/_pocketfft.py
https://github.com/numpy/numpy/blob/main/numpy/fft/_pocketfft.py
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/

BIBLIOGRAPHY 84

[9] LinkLabs. “Complete list of IoT network protocols.” (2016), [Online]. Available: https :

/ / www . link - labs . com / blog / complete - list - iot - network - protocols (visited on

12/12/2023).

[10] M. Distribution. “Wireless glossary.” (2023), [Online]. Available: https://www.msdist.co.

uk/support/articles/general-wireless/wireless-glossary (visited on 12/12/2023).

[11] Ofcom. “Licensed short-range devices.” (2023), [Online]. Available: https://www.ofcom.

org.uk/manage-your-licence/radiocommunication-licences/licensed-short-range

(visited on 12/12/2023).

[12] M. Distribution. “Spectrum.” (2023), [Online]. Available: https://www.msdist.co.uk/

support/spectrum#:~:text=The%2024GHz%20spectrum%20is%20a,%2F752%2FEU%20band%

20No (visited on 12/12/2023).

[13] Ofcom. “UK frequency allocation table (UKFAT).” (2023), [Online]. Available: https://

static.ofcom.org.uk/static/spectrum/fat.html (visited on 12/12/2023).

[14] C. Express. “802.11g.” (2023), [Online]. Available: https://www.comms-express.com/

infozone/article/802-11g-wi-fi/#:~:text=802.11g%20was%20developed%20by,in%

20the%202.4%20GHz%20bands (visited on 12/12/2023).

[15] L. Learning. “How do you compare the performance of OFDM with other modulation schemes

such as QAM and PSK?” (2023), [Online]. Available: https://www.linkedin.com/advice/

1/how-do-you-compare-performance-ofdm (visited on 12/12/2023).

[16] LinkLabs. “ZigBee vs bluetooth.” (2015), [Online]. Available: https://www.link-labs.com/

blog/zigbee-vs-bluetooth (visited on 12/12/2023).

[17] R. Falanji, M. Heusse, and A. Duda, “Range and capacity of LoRa 2.4 GHz,” in Mobile and

Ubiquitous Systems: Computing, Networking and Services, S. Longfei and P. Bodhi, Eds.,

vol. 492, Series Title: Lecture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering, Cham: Springer Nature Switzerland, 2023, pp. 403–

421, isbn: 978-3-031-34775-7 978-3-031-34776-4. doi: 10.1007/978-3-031-34776-4_21.

[Online]. Available: https://link.springer.com/10.1007/978-3-031-34776-4_21

(visited on 12/17/2023).

[18] RFC. “Internet protocol darpa internet program protocol specification.” (1981), [Online].

Available: https://www.rfc-editor.org/rfc/rfc791 (visited on 12/14/2023).

[19] I. A. N. Authority. “Autonomous system (AS) numbers.” (2023), [Online]. Available: https:

//www.iana.org/assignments/as-numbers/as-numbers.xhtml (visited on 12/14/2023).

https://www.link-labs.com/blog/complete-list-iot-network-protocols
https://www.link-labs.com/blog/complete-list-iot-network-protocols
https://www.msdist.co.uk/support/articles/general-wireless/wireless-glossary
https://www.msdist.co.uk/support/articles/general-wireless/wireless-glossary
https://www.ofcom.org.uk/manage-your-licence/radiocommunication-licences/licensed-short-range
https://www.ofcom.org.uk/manage-your-licence/radiocommunication-licences/licensed-short-range
https://www.msdist.co.uk/support/spectrum#:~:text=The%2024GHz%20spectrum%20is%20a,%2F752%2FEU%20band%20No
https://www.msdist.co.uk/support/spectrum#:~:text=The%2024GHz%20spectrum%20is%20a,%2F752%2FEU%20band%20No
https://www.msdist.co.uk/support/spectrum#:~:text=The%2024GHz%20spectrum%20is%20a,%2F752%2FEU%20band%20No
https://static.ofcom.org.uk/static/spectrum/fat.html
https://static.ofcom.org.uk/static/spectrum/fat.html
https://www.comms-express.com/infozone/article/802-11g-wi-fi/#:~:text=802.11g%20was%20developed%20by,in%20the%202.4%20GHz%20bands
https://www.comms-express.com/infozone/article/802-11g-wi-fi/#:~:text=802.11g%20was%20developed%20by,in%20the%202.4%20GHz%20bands
https://www.comms-express.com/infozone/article/802-11g-wi-fi/#:~:text=802.11g%20was%20developed%20by,in%20the%202.4%20GHz%20bands
https://www.linkedin.com/advice/1/how-do-you-compare-performance-ofdm
https://www.linkedin.com/advice/1/how-do-you-compare-performance-ofdm
https://www.link-labs.com/blog/zigbee-vs-bluetooth
https://www.link-labs.com/blog/zigbee-vs-bluetooth
https://doi.org/10.1007/978-3-031-34776-4_21
https://link.springer.com/10.1007/978-3-031-34776-4_21
https://www.rfc-editor.org/rfc/rfc791
https://www.iana.org/assignments/as-numbers/as-numbers.xhtml
https://www.iana.org/assignments/as-numbers/as-numbers.xhtml

BIBLIOGRAPHY 85

[20] IEFT. “Address allocation for private internets.” (1918), [Online]. Available: https : / /

datatracker.ietf.org/doc/html/rfc1918 (visited on 12/14/2023).

[21] Brilliant. “Dijkstra’s shortest path algorithm.” (2023), [Online]. Available: https://brilliant.

org/wiki/dijkstras-short-path-finder/ (visited on 12/15/2023).

[22] GOV.UK. “How to install network infrastructure in shared buildings.” (2018), [Online]. Avail-

able: https://www.gov.uk/guidance/how-to-install-network-infrastructure-in-

shared-buildings (visited on 12/15/2023).

[23] R. NCC. “Request a /24 allocation via the waiting list.” (2023), [Online]. Available: https:

//www.ripe.net/manage-ips-and-asns/ipv4/request-a-24-allocation-via-the-

waiting-list (visited on 12/14/2023).

[24] RFC. “A borger gateway protocol (BGP -4).” (2006), [Online]. Available: https://datatracker.

ietf.org/doc/html/rfc4271 (visited on 12/14/2023).

[25] I. Society. “IPv6 address planning: Guidelines for IPv6.” (2013), [Online]. Available: https:

//www.internetsociety.org/resources/deploy360/2013/ipv6-address-planning-

guidelines-for-ipv6-address-allocation (visited on 12/14/2023).

[26] A. Pashamokhtari, N. Okui, M. Nakahara, A. Kubota, G. Batista, and H. H. Gharakheili,

Quantifying and managing impacts of concept drifts on IoT traffic inference in residential

ISP networks, Jan. 30, 2023. arXiv: 2301.06695[cs]. [Online]. Available: http://arxiv.

org/abs/2301.06695 (visited on 12/17/2023).

[27] BSRIA. “BSRIA’s latest study shows uptake of convergence and IoT in commercial build-

ings.” (2020), [Online]. Available: https://www.bsria.com/uk/news/article/according_

to_bsria_there_is_an_uptake_of_convergence_and_iot_in_commercial_buildings/

(visited on 12/14/2023).

[28] C. C. Service. “How to install network infrastructure in shared buildings.” (2023), [Online].

Available: https://www.crowncommercial.gov.uk/agreements/RM6116#:~:text=Lot%

203a%3A%20IoT%20and%20Smart%20Cities%20(Smart%20shared%20and%20connected%

20spaces) (visited on 12/15/2023).

[29] Ofcom. “IR 2030 UK interface requirements 2030.” (2023), [Online]. Available: https://

www.ofcom.org.uk/__data/assets/pdf_file/0028/84970/ir-2030.pdf (visited on

12/12/2023).

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918
https://brilliant.org/wiki/dijkstras-short-path-finder/
https://brilliant.org/wiki/dijkstras-short-path-finder/
https://www.gov.uk/guidance/how-to-install-network-infrastructure-in-shared-buildings
https://www.gov.uk/guidance/how-to-install-network-infrastructure-in-shared-buildings
https://www.ripe.net/manage-ips-and-asns/ipv4/request-a-24-allocation-via-the-waiting-list
https://www.ripe.net/manage-ips-and-asns/ipv4/request-a-24-allocation-via-the-waiting-list
https://www.ripe.net/manage-ips-and-asns/ipv4/request-a-24-allocation-via-the-waiting-list
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc4271
https://www.internetsociety.org/resources/deploy360/2013/ipv6-address-planning-guidelines-for-ipv6-address-allocation
https://www.internetsociety.org/resources/deploy360/2013/ipv6-address-planning-guidelines-for-ipv6-address-allocation
https://www.internetsociety.org/resources/deploy360/2013/ipv6-address-planning-guidelines-for-ipv6-address-allocation
https://arxiv.org/abs/2301.06695 [cs]
http://arxiv.org/abs/2301.06695
http://arxiv.org/abs/2301.06695
https://www.bsria.com/uk/news/article/according_to_bsria_there_is_an_uptake_of_convergence_and_iot_in_commercial_buildings/
https://www.bsria.com/uk/news/article/according_to_bsria_there_is_an_uptake_of_convergence_and_iot_in_commercial_buildings/
https://www.crowncommercial.gov.uk/agreements/RM6116#:~:text=Lot%203a%3A%20IoT%20and%20Smart%20Cities%20(Smart%20shared%20and%20connected%20spaces)
https://www.crowncommercial.gov.uk/agreements/RM6116#:~:text=Lot%203a%3A%20IoT%20and%20Smart%20Cities%20(Smart%20shared%20and%20connected%20spaces)
https://www.crowncommercial.gov.uk/agreements/RM6116#:~:text=Lot%203a%3A%20IoT%20and%20Smart%20Cities%20(Smart%20shared%20and%20connected%20spaces)
https://www.ofcom.org.uk/__data/assets/pdf_file/0028/84970/ir-2030.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0028/84970/ir-2030.pdf

BIBLIOGRAPHY 86

[30] I. Review. “Broadband ISP BT sees UK network traffic peak at 28tbps.” (2022), [Online].

Available: https://www.ispreview.co.uk/index.php/2022/07/broadband-isp-bt-

sees-uk-network-traffic-peak-at-28tbps.html (visited on 12/15/2023).

[31] M. Handley, “Why the internet only just works,” BT Technology Journal, vol. 24, no. 3,

pp. 119–129, Jul. 2006, issn: 1358-3948, 1573-1995. doi: 10.1007/s10550-006-0084-z.

[Online]. Available: http://link.springer.com/10.1007/s10550-006-0084-z (visited on

11/17/2023).

[32] Wireshark. “Duplicate packets.” (2023), [Online]. Available: https://wiki.wireshark.org/

DuplicatePackets (visited on 12/16/2023).

[33] Wireshark. “TCP_analyze_sequence_numbers.” (2023), [Online]. Available: https://wiki.

wireshark.org/TCP_Analyze_Sequence_Numbers (visited on 12/16/2023).

[34] Wireshark. “RTT graph showing values higher than tcp.analysis.ack_rtt.” (2023), [Online].

Available: https://osqa-ask.wireshark.org/questions/38607/rtt-graph-showing-

values-higher-than-tcpanalysisack_rtt/ (visited on 12/16/2023).

[35] K. P. Murphy, Machine learning: a probabilistic perspective (Adaptive computation and ma-

chine learning series). Cambridge, MA: MIT Press, 2012, 1067 pp., isbn: 978-0-262-01802-9.

[Online]. Available: https://mitpress.mit.edu/9780262018029/machine-learning/

(visited on 12/16/2023).

[36] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,” Jour-

nal of Big Data, vol. 6, no. 1, p. 27, Dec. 2019, issn: 2196-1115. doi: 10.1186/s40537-019-

0192-5. [Online]. Available: https://journalofbigdata.springeropen.com/articles/

10.1186/s40537-019-0192-5 (visited on 12/17/2023).

https://www.ispreview.co.uk/index.php/2022/07/broadband-isp-bt-sees-uk-network-traffic-peak-at-28tbps.html
https://www.ispreview.co.uk/index.php/2022/07/broadband-isp-bt-sees-uk-network-traffic-peak-at-28tbps.html
https://doi.org/10.1007/s10550-006-0084-z
http://link.springer.com/10.1007/s10550-006-0084-z
https://wiki.wireshark.org/DuplicatePackets
https://wiki.wireshark.org/DuplicatePackets
https://wiki.wireshark.org/TCP_Analyze_Sequence_Numbers
https://wiki.wireshark.org/TCP_Analyze_Sequence_Numbers
https://osqa-ask.wireshark.org/questions/38607/rtt-graph-showing-values-higher-than-tcpanalysisack_rtt/
https://osqa-ask.wireshark.org/questions/38607/rtt-graph-showing-values-higher-than-tcpanalysisack_rtt/
https://mitpress.mit.edu/9780262018029/machine-learning/
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0192-5
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0192-5

	Front matter
	Title page
	Assignment:
	List of Figures
	List of Tables

	Part 1 - Medium Access Control
	 Performance estimator for 3 instances.
	Slotted Aloha Python Simulation for the instances.
	A multi-user scenario:

	Part 2 - Physical Layer
	Create the QAM and OFDM objects and generate the transmit signal. [30%]
	Characterize the impulse response of the channel. [30%]
	Provide a short summary of the regulatory conditions in the UK associated with this frequency band. [20%]
	Provide a short summary of competitor technologies. [20%]

	Part 3 - Network and Transport
	The backbone topology of the network with realistic IP addresses and OSPF weights. [25%]
	Topology
	IP addresses
	OSPF Weights

	Proposed capacity of each link taking into account population in each region/city. [25%]
	Wireshark
	Analysing the distribution of traffic (TCP vs. UDP)
	Analysisng TCP Fast Retransmissions, TCP Duplicate ACKS, and ACK RTT

	Part 4 - Data Analytics
	Data Visualization. [20%]
	Create visualisations illustrating the variation of each sensor's value over time.
	Generate a count plot displaying the quantity of the unique labels of the machine status. What insights can you derive from the histogram?

	Data Exploration: [40%]
	Plot the Pearson correlation of the data with a correlation coefficient greater than 0.9. What insights we can derive based on the produced results and task A.a? Is it possible to group any of the sensor data together? If yes, could you provide an example of such a group?
	Produce a table containing descriptive statistics, summarizing the central tendency, dispersion and shape of a dataset’s distribution, for the sensor data.
	Compute the duration, in terms of the number of days, for which the data was collected.

	Data Pre-processing: [40%]
	Identify and count the number of null values per attribute, then remove entries with null values.
	Identify and count any duplicated entries and remove them from the dataset.
	Encode the data in the machine status column.
	Determine the data types of the sensor data, and normalise the relevant input features.

	Code Appendix Part 1
	The impact on slotted Aloha‘s performance with different packet arrival rates.
	Adjusted slot size

	Code Appendix Part 2
	Average Bit Error Rate
	QAM and OFDM with and without noise
	Impulse Response Characteristics based in Time and Frequency

	Code Appendix Part 3
	TCP vs UDP
	Average RTT
	TCP Analysis

	Code Appendix Part 4
	Variation of sensors over time
	Unique Labels Count
	General Pearson Correlation
	Pearson Correlation for 0.9
	Descriptive Statistics
	Number of days
	Counting null values and removing them
	Counting duplicate entries
	Encoding the data in the machine status column
	Data types and normalisation

	Bibliography

